

Specifications are subject to change without notice.

 \odot 2022 Hangzhou Vango Technologies, Inc.

This document contains information that is proprietary to Vango Technologies, Inc.

Unauthorized reproduction of this information in whole or in part is strictly prohibited.

Revision

Date	Version	Description			
2019.07.19	2.0	Initial release			
2020.11.25	2.1	Modify the description of SYS_STS register.			
2020.02.18	3.1	 Modify ANA_CTRL0 BIT13 and BIT14 function Modify ANA_CTRL1 BIT7 and BIT23 function Add pull-up resistance to TX, RX and RSTN pin When the RSTN pin remains low for a certain period of time, the chip w be reset. The time was changed from 1 ms to 2 ms Open the input short circuit function of voltage channel and current channel on-chip reference voltage changed to 1.21 V The power supply voltage range is changed to 2.6 ~ 3.6 V The power down threshold voltage is changed to 2.6 ~ 3.1 V 			
2022.01.20	3.2	Delete relevant contents of Roche coil			
2022.03.01 3.3 M of D		Modify SYS_INTSTS and SYS_INTEN registers increase the overflow interrupt of high-speed energy accumulator Modify the description of DMA_MODE bit in DSP_CTRL5 register (added description: at least one channel of waveform buffer and upload must be opened before enabling DMA transmission). Modify the description of bit3 and bit4 in DSP_CTRL5 registers, description of DMA channel manual switch for waveform upload. Delete the frequency function in DSP_CTRL0 register. Modify the function description of UPERIOD and IPERIOD from half cycle			

		unit to cycle unit		
		Modify SHORT_I of ANA_CTRL0, Change to current IA channel ADC input		
		short circuit		
		Modify the description of RCL clock intervals as determined time, and the		
		algorithm is the longest time interval x 1.5		
		Modify the description of forced shutdown energy accumulator and CF		
		output function in SYS_MISC register		
		The power down threshold voltage is changed to 2.6 \sim 3.05 V		
2022.03.25	3.4	Modify the description of CLK1 in Chapter 5		
		Add Energy accumulator counter description		
2022.05.19	3.5	Delete temperature measurement function		
		ADD V9340/V9343 type		
		Modify the table of parameter		
2022.08.13	3.6	Modify UART baud rate range		
		Table 5-1 in the field register, ANA_CTRL1 instead of DSP_CTRL1.		
2022.10.11	3.7	Modify the description of voltage dip in Section 11.2		
2023.03.01	3.8	Change V9343 to V9340T		

Content

Rev	vision .			
Figure List				
Tab	le List			
1.	G	General	Description	
	1.1.	Funct	ional Block Diagram	
	1.2.	Pin D	escription	
	1	.2.1.	V9381 Pin Description	
	1	.2.2.	V9360 Pin Description	
	1	.2.3.	V9340 Pin Description	
	1	.2.4.	V9340T Pin Description	
	1	.2.5.	Pin Description	
	1.3.	Paran	neters	
	1.4.	Absol	ute Maximum Ratings	
2.	R	egister	rs	
	2.1.	Regis	ters List	
	2.2.	Analo	g Control Registers	
	2	.2.1.	ANA_CTRL0 Register	
	2	.2.2.	ANA_CTRL1 Register	
	2.3.	Syste	em Control & Status Register	
	2	.3.1.	SYS_BAUDCNT1 Register	
	2	.3.2.	SYS_BAUDCNT8 Register	
	2	.3.3.	SYS_INTSTS Register	
	2	.3.4.	SYS_INTEN Register	
	2	.3.5.	SYS_STS Register	
	2	.3.6.	SYS_MISC Register	
	2	.3.7.	SYS_BLKX Register	
	2	.3.8.	SYS_IOCFGXX Register	
	2	.3.9.	SYS_VERSION Register	
	2.4.	Meter	ring Control Registers	

	2.4.1. DSP_CTRL0 Register	58
	2.4.2. DSP_CTRL1 Register	63
	2.4.3. DSP_CTRL2 Register	67
	2.4.4. DSP_CTRL3 Register	72
	2.4.5. DSP_CTRL4 Register	76
	2.4.6. DSP_CTRL5 Register	78
	2.5. Metering Data Register	82
	2.5.1. DC Component Register	82
	2.5.2. RMS Register	83
	2.5.3. Active/ Reactive Power Register	84
	2.5.4. Fundamental Wave Channel Register	85
	2.5.5. Line Frequency Register	86
	2.6. Energy Accumulator Register	86
	2.7. Phase Measurement Register	88
	2.8. Power-creep Threshold Register	88
	2.9. Voltage Swell or Dip Threshold Register	89
	2.10. Fast Detection Threshold Register	90
	2.11. Waveform Data Register	90
	2.12. Calibration Register	91
	2.12.1. DC Bias Setting Register	91
	2.12.2. RMS Calibration Register	91
	2.12.3. Power Calibration Register	92
	2.12.4. Threshold Register	93
	2.12.5. Phase Calibration Register	95
	2.12.6. Bandpass Filter Register	95
	2.13. Checksum Register	96
_		~ ~
3.	Main Power Supply	00
	3.1. Power Supply Monitoring Circuit	00
	3.2. Digital Power Supply 10	U1
	3.3. Power on Reset Circuit 10	01
4.	Bandgap circuit	02

5. Clock		ock	104
	5.1.	External input high-frequency clock	106
	5.2. High-Frequency RC Oscillator		
	5.3. Low-Frequency RC Oscillator		
	5.4.	External Input Clock	107
6.	RI	ESET	108
	6.1.	Reset Related Registers	108
	6.2.	Power-On Reset (POR)	108
	6.3.	External Reset	109
	6.4.	RX Reset	110
	6.5.	Global Software Reset	112
7.	U	ART	113
	7.1.	Overview	113
	7.2.	Broadcast Communication	114
	7.3.	Read Operation	116
	7.4.	Write Operation	118
	7.5.	Block Reading Operation	120
8.	SI	РІ	125
	8.1.	Overview	125
	8.2.	Write Operation	126
	8.3.	Read Operation	127
	8.4.	Initialize interface	128
	8.5.	4-wire SPI Mode	129
	8.6.	3-wire SPI Mode	129
9.	D	SP	130
	9.1.	Overview	130
	9.2.	Features	130
	9.3. Functional Diagram		131
	9.4.	Application Description	133
9.4.1. Phase Calibration			133
	9.	4.2. Frequency Calculation	133

9.4.4. Power-creep Detection10. Active Waveform upload and buffer	134
10. Active Waveform upload and buffer	136
	136
10.1. Active Waveform upload	150
10.1.1. Overview	136
10.1.2. Timing and Format	137
10.2. Waveform Buffer	138
11. Electrical Signal monitoring	139
11.1. Zero-crossing Detection	139
11.2. Voltage Swell/Dip	140
11.3. Over-voltage and under-voltage/Over-current and under-current	141
12. Energy Accumulator	143
12.1. High-speed Energy Accumulator	144
12.2. Low-speed Energy Accumulator	145
12.3. CF Output	145
12.4. Energy Accumulator Power-creep Detection	146
12.5. Active Accumulation uploading Interface	146
13. Signal IO Ports	148
13.1. Overview	148
13.2. Functional Description	148
14. Outline Dimensions	150

Figure List

Figure 1-1 Functional block diagram 15
Figure 1-2 V9381 Pin Description
Figure 1-3 V9360 Pin Description
Figure 1-4 V9340 Pin Description
Figure 1-5 V9340T Pin Description
Figure 3-1 Main Power System
Figure 3-2 Power-down monitoring
Figure 4-1 Register for Bandgap Circuit
Figure 5-1 Clock generation
Figure 6-1 Timing for POR 109
Figure 6-2 Timing for RSTN 110
Figure 6-3 Timing for RX Reset of UART
Figure 6-4 Timing for RX Reset of SPI 111
Figure 6-5 Timing of Global Software Reset 112
Figure 7-1 Structure of an 11-Bit data byte (from LSB to MSB) 113
Figure 7-2 command frame for broadcast writing operation
Figure 7-3 Communication protocol for read operation
Figure 7-4 Communication protocol for write operation
Figure 7-5 address mapping for block reading 121
Figure 7-6 Communication protocol for block reading operation
Figure 8-1 Communication protocol for SPI write operation
Figure 8-2 Communication protocol for SPI read operation
Figure 8-3 Communication protocol for 4 wire SPI mode 129

Figure 8-4 Communication protocol for 3 wire SPI mode12	29
Figure 9-1 Functional Diagram 1 of Metering DSP13	31
Figure 9-2 Functional Diagram 2 of Metering DSP13	32
Figure 10-1 Communication timing of DMA SPI 13	37
Figure 11-1 output waveform for voltage/current zero-crossing14	10
Figure 11-2 Over-voltage and under-voltage/Over-current and under-current detect 14	1
Figure 12-1 Functional block diagram of energy bucket 14	13
Figure 13-1 Functional Block Diagram of signal IO ports14	18
Figure 14-1 Outline dimension for V9381 15	50
Figure 14-2 Outline dimension for V9360 15	50
Figure 14-3 Outline dimension for V9340/V9340T 15	51

Table List

Table 1-1 Pin description 18
Table 1-2 Parameters 20
Table 1-3 Absolute maximum ratings 22
Table 2-1 Register list 24
Table 2-2 Analog Control Register 0 (0x00, ANA_CTRL0) 30
Table 2-3 Analog Control Register 1 (0x01, ANA_CTRL1) 31
Table 2-4 UART transmitting data 1bit count value (0x70, SYS_BAUDCNT1) 34
Table 2-5 UART receiving data 8bit count value (0x71, SYS_BAUDCNT8)
Table 2-6 System Interrupt Register (0x72, SYS_INTSTS) 35
Table 2-7 System Interrupt Enable Register (0x73, SYS_INTEN) 41
Table 2-8 System Status Register (0x74, SYS_STS)
Table 2-9 System Control Register (0x75, SYS_MISC)
Table 2-10 Block-reading Address Register 0 (0x79, SYS_BLK0_ADDR) 53
Table 2-11 Block-reading Address Register 1 (0x7A, SYS_BLK1_ADDR)
Table 2-12 Block-reading Address Register 2 (0x7B, SYS_BLK2_ADDR) 53
Table 2-13 Block-reading Address Register 3 (0x7C, SYS_BLK3_ADDR)
Table 2-14 IO Configuration Register 0 (0x7D, SYS_IOCFGX0) 54
Table 2-15 P0CFG Bit[5:0] Description 54
Table 2-16 IO Configuration Register 1 (0x7E, SYS_IOCFGX1) 57
Table 2-17 Version Information Register (0x7F, SYS_VERSION) 58
Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0)
Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1)
Table 2-20 Metering Control Register 2 (0x04, DSP_CTRL2) 67

Table 2-21 Metering Control Register 3 (0x05, DSP_CTRL3)
Table 2-22 Metering Control Register 4 (0x06, DSP_CTRL4)
Table 2-23 Metering Control Register 5 (0x07, DSP_CTRL5)
Table 2-24 DC Component Register 82
Table 2-25 Voltage/ Current/ Measurement Signal (M) RMS Register
Table 2-26 Active/ Reactive Power Register
Table 2-27 Fundamental Wave Channel Instantaneous Register
Table 2-28 Fundamental Wave Channel Average Register 85
Table 2-29 Line Frequency Register (0x21, DSP_DAT_FRQ) 86
Table 2-30 Energy Accumulator Register
Table 2-31 Phase Measurement Register
Table 2-32 Power-creep Threshold Register 88
Table 2-33 Voltage Swell or Dip Threshold Register
Table 2-34 Fast detection Threshold Register 90
Table 2-35 Waveform Data Register 90
Table 2-36 DC Bias Setting Register
Table 2-37 Voltage/ Current/ Measurement RMS Calibration Register
Table 2-38 Total-wave Active/ Reactive Power Calibration Register
Table 2-39 Threshold Register
Table 2-40 Phase Calibration Register (0x33, DSP_CFG_PHC) 95
Table 2-41 Bandpass Filter Register (0x37, DSP_CFG_BPF)
Table 2-42 Checksum Register (0x38, DSP_CFG_CKSUM) 96
Table 2-43 Self-checking Register 96
Table 5-1 Clock Generation Related Registers 105

Table 6-1 Reset Related Registers 108
Table 7-1 UART communication errors 113
Table 7-2 Structure of Data Byte (B7:B0) From Master MCU to V93XX on Broadcast Operation 114
Table 7-3 Structure of Data Byte (B7:B0) From Master MCU to V93XX on Read Operation 116
Table 7-4 Structure of Data Byte (B7:B0) From V93XX to Master MCU on read Operation
Table 7-5 Structure of Data Byte (B7:B0) From Master MCU to V93XX on Write Operation 118
Table 7-6 Structure of Data Byte (B7:B0) From V93XX to Master MCU on Write Operation 120
Table 7-7 Structure of Data Byte (B7:B0) From Master MCU to V93XX on block reading Operation 121
Table 7-8 Structure of Data Byte (B7:B0) From V93XX to Master MCU on block reading Operation 123
Table 8-1 SPI communication errors 125
Table 8-2 Structure of Data Byte (B7:B0) From Master MCU to V93XX on write Operation 126
Table 8-3 Structure of Data Byte (B7:B0) From Master MCU to V93XX on read Operation
Table 8-4 Structure of Data Byte (B7:B0) From V93XX to Master MCU on read Operation
Table 8-5 SPI interface initialization data (hexadecimal)
Table 9-1 Phase Calibration Description 133
Table 9-2 Frequency register source FRQ_SEL description 133
Table 9-3 Frequency Constant Description 134
Table 10-1 Active waveform data upload configuration 136
Table 10-2 Active waveform data upload format 137
Table 10-3 waveform buffer data format 138

1.General Description

The V93XX is a single-phase metering chip which supports the total-wave and fundamental-wave of various modes and supports various power grids to monitor events. Furthermore, the waveform data can be transmitted via DMA by SPI protocol, or storage locally through the waveform buffer.

- Main Power: 3.3 V power supply, voltage input range 2.6 V to 3.6 V.
- Reference voltage: 1.21 (typical T.C. 10 ppm/°C)
- Low-power design: the typical consumption in normal operation is about 2.6 mA.
- Metering Features:
 - > 3 independent oversampling Σ/Δ ADCs: one of the ADC (channel A) can measure voltage, the other ADC with multifunction measure current.
 - Highly Metering Accurate:
 - ♦ Supports the requirements of IEC 62053-21:2020/ IEC 62053-22:2020 and IEC 62053-23:2020.
 - ♦ Less than 0.1% error in active energy metering over a dynamic range of 5000:1
 - ♦ Less than 0.2% error in reactive energy metering over a dynamic range of 5000:1
 - ♦ Less than 0.5% error in current/voltage RMS over a dynamic range of 5000:1.
 - > Supports various measurements:
 - ♦ DC components of voltage and current signal
 - Total /fundamental instantaneous/average current/voltage RMS
 - ♦ Total instantaneous/average active /reactive/apparent power
 - ♦ 10 or 12 cycles of total RMS
 - ♦ Fundamental instantaneous/average active /reactive/apparent power
 - active/reactive energy, active/reactive/apparent power, Irms, constant value, and fundamental wave are selectable
 - ♦ Line frequency and phase
 - DC signals measurement

- Software calibration
- > Accelerating calibration when weak current is applied.
- Supports detection for over-current, over-voltage, under-current, under-voltage, voltage dip, and voltage swell
- Supports waveform buffer and waveform transmitted by DMA
- Supports active upload for energy accumulation
- Current input: current shunt resistor, CT, Hall cell, and TMR supportive
- CTI input clock frequency: 6.5536 MHz
- Supports UART communication interface
- Supports SPI communication interface
- Operating Temperature:

-40~+85 °C (V9381/ V9360/ V9340)

-40~+105 °C (V9340T)

- Storage Temperature: -55~+150 °C
- Package: SSOP(M)24, SOP(M)16, SOP8

1.1. Functional Block Diagram

Figure 1-1 Functional block diagram

1.2. Pin Description

1.2.1. V9381 Pin Description

Figure 1-2 V9381 Pin Description

1.2.2. V9360 Pin Description

Figure 1-3 V9360 Pin Description

1.2.3. V9340 Pin Description

Figure 1-4 V9340 Pin Description

1.2.4. V9340T Pin Description

Figure 1-5 V9340T Pin Description

1.2.5. Pin Description

Table 1-1 Pin description

Pin No.					
V9381	V9360	V9340/V9340T	Mnemonic Typ	Туре	Description
1	15		СТІ	Input	Input pin for 6.5536 MHz clock.
2	16		NC		Floating
3	1	2	UP	Input	Positive input pin for Voltage Channel Sampling.
4	2		UN	Input	Negative input pin for Voltage Channel Sampling.
5	3		IBN	Input	Negative input pin for current channel B sampling.
6	4		IBP	Input	Positive input pin for current channel B

					sampling.
7	5	3	IAN	Input	Negative input pin for current channel A sampling.
8	6	4	IAP	Input	Positive input pin for current channel A sampling.
9	9	1	VDD	Power	3.3 V power supply. This pin must be decoupled to a $\ge 0.1~\mu\text{F}$ capacitor.
10	7	8	VSS	Ground	Ground
11	10	7	DVCC	Power	Digital power output. This pin must be connected to a parallel circuit combined by a \ge 4.7 µF capacitor and 0.1 µF capacitor, and then grounded.
12	8	5	VREF	Input/ Output	On-chip reference voltage. This pin must be connected to a 1 μF capacitor, and then grounded.
13	-		X32KIN	Input	32 KHz CLK input pin (Digital IO interface).
14	-		RSTN	Input	Reset input, active low. After power on, the "RSTN" could be driven low for at least 2 ms by MCU to force the chip into the reset state. There is a pull-up resistor inside the chip, which is about 50K ohm.
15	-		P6	Output	CF1/ CF2/ single interruption/ all interruption/ automatic data uploads
16	-		Р5	Output	CF1/ CF2/ single interruption/ all interruption/ automatic data uploads
17	11		Р3	Output	CF1/ CF2/ single interruption/ all interruption/ automatic data uploads

18	12		P2	Output	CF1/ CF2/ single interruption/ all interruption/ automatic data uploads
19	13	6	RX/MOSI	Input	UART communicates with RX pin. / SPI interface in slave mode. It's used for data input. There is a pull-up resistor inside the chip, which is about 50 Kohm.
20	14	6	TX/MISO	Output	UART communicates with TX pin. / SPI interface in slave mode. It's used for data output. There is a pull-up resistor inside the chip, which is about 50 Kohm.
21	-		A1/SPCSN	Input	Address select pin 1 for UART. / Chip select pin for SPI
22	-		A0/SPCK	Input	Address select pin 0 for UART. / SPI interface in slave mode. It's used for clock input.
23	-		P1	Output	CF1/ CF2/ single interruption/ all interruption/ automatic data uploads
24	-		PO	Output	CF1/ CF2/ single interruption/ all interruption/ automatic data uploads

1.3. Parameters

Table 1-2 Parameters

Unless otherwise specified, the data are based on the test results of TA = 25 $\,\,{}^\circ\!\mathrm{C}$, VDD = 3.3 V.

Parameter	Min.	Тур.	Max.	Unit	Remark	
Phase Error Between Chann	els					
PF=0.8 Capacitive		±0.05		Degree		
PF=0.5 Inductive		±0.05		Degree		
VangoVango Technologies, Inc.20 / 151						

Parameter	Min.	Тур.	Max.	Unit	Remark
					Dynamic Range 5000:1 @ 25°C
Active Energy Metering Error		0.1		%	Fundamental frequency deviation within $\pm 25\%$
Active Energy Metering Bandwidth		1.6		kHz	
					Dynamic Range 5000:1 @ 25°C
Reactive Energy Metering Error		0.1		%	Fundamental frequency deviation within $\pm 25\%$
Reactive Energy Metering Bandwidth		1.6		kHz	
					Dynamic Range 2000:1 @ 25°C
VRMS Metering Error		1		%	Fundamental frequency deviation within $\pm 25\%$
VRMS Metering Bandwidth		1.6		kHz	
					Dynamic Range 5000:1 @ 25°C
IRMS Metering Error		1		%	Fundamental frequency deviation within $\pm 25\%$
IRMS Metering Bandwidth		1.6		kHz	
Frequency Measurement				•	
Range	40		70	Hz	
Error		0.01		Hz	
Analog Input				1	
Maximum Signal Level			±200	mV	Peak value
ADC		1	1	1	
DC Offset			10	mV	
Resolution		23		Bit	Sign bit is included.
Bandwidth (-3dB)	0.4	3.2	6.4	kHz	
On-chip Reference	I	1	1	1	
Reference Error	-18		18	mV	@ 25°C
Power Supply Rejection Ratio		92		dB	
Temperature Coefficient		10	30	ppm/° C	

Parameter	Min.	Тур.	Max.	Unit	Remark
Output Voltage		1.210		V	
Power Supply					
VDD33	2.6	3.3	3.6	v	
POR Detection Threshold	1.22	1.3	1.34	v	Error: ±10%
Power-Down Detection Threshold	2.6	2.8	3.05	v	
Digital Power Supply (DVCC	.)				
Voltage		1.5		V	Programmable. Error: ±10%
Current			35	mA	
СТІ					
RCL frequency	-50%	32.768	+50%	KHz	
RCH frequency	-20%	6.5536	+20%	MHz	
Logic Input	RX				
Input High Voltage, V_{INH}	2.4			V	
Input Low Voltage, VINL	0		0.4	v	
Input Current, I _{IN}			1	μA	
Input Capacitance, C_{IN}			10	pF	
Baud Rate	1200		19200	bps	Automatic baud rate adaption
SPI Data Rate			800	KHz	Related to system CLK, the highest speed is one sixteenth of system CLK.

1.4. Absolute Maximum Ratings

Unless otherwise specified, the data are based on the test results of TA = 25 $^{\circ}$ C, VDD = 3.3 V. Operating circumstance exceeding Absolute Maximum Ratings may cause permanent damage to the device.

Table 1-3 Absolute maximum ratings

Parameter	Mnemonic	Min.	Max.	Unit	Description
Analog Power Supply	VDD	-0.3	+3.63	V	To ground.
Digital Power Supply	DVCC	-0.3	+1.98	V	To ground.
Analog Input Voltage	IAP/IAN/IBP/IBN	-0.3	3.3	V	To ground.
Analog Input Voltage	UP/UN	-0.3	3.3	V	To ground.
		-40	+85	°C	V9381/V9360/V9340
Operating Temperature		-40	+105	°C	V9340T
Storage Temperature		-55	+150	°C	

2. Registers

All register will be reset to default value which are hexadecimal when V93XX is in the reset state. There are four kinds of reset conditions, including power on reset (POR) external pin reset, global software reset, and RX reset.

2.1. Registers List

Table 2-1	Register	list
-----------	----------	------

Register	Туре	Address	Description	Default
DSP_CTRL0	R/W	0x00	Analog Control Register 0.	0x00000000
DSP_CTRL1	R/W	0X01	Analog Control Register 1.	0×00000000
DSP_CTRL0	R/W	0x02	Metering Control Register 0.	0×00000000
DSP_CTRL1	R/W	0x03	Metering Control Register 1.	0x00000000
DSP_CTRL2	R/W	0x04	Metering Control Register 2.	0×00000000
DSP_CTRL3	R/W	0x05	Metering Control Register 3.	0×00000000
DSP_CTRL4	R/W	0x06	Metering Control Register 4.	0x00000000
DSP_CTRL5	R/W	0x07	Metering Control Register 5.	0x00000000
DSP_DAT_PA	R	0x08	Instantaneous Active Power of channel A.	
DSP_DAT_QA	R	0x09	Instantaneous Reactive Power of channel A.	
DSP_DAT_SA	R	0x0A	Instantaneous Apparent Power of channel A.	
DSP_DAT_PB	R	0x0B	Instantaneous Active Power of channel B.	
DSP_DAT_QB	R	0x0C	Instantaneous Reactive Power of channel B.	
DSP_DAT_SB	R	0x0D	Instantaneous Apparent Power of channel B.	
DSP_DAT_RMS0UA	R	0x0E	Instantaneous RMS of Voltage.	
DSP_DAT_RMS0IA	R	0x0F	Instantaneous RMS of current A.	
DSP_DAT_RMS0IB	R	0x10	Instantaneous RMS of Current B.	
DSP DAT CH1	R	0x11	Instantaneous Value of Fundamental wave of	
	ĸ	0.11	Channel 1.	
DSP_DAT_CH2	R	0x12	Instantaneous Value of Fundamental wave of	

			Channel 2.	
DSP_DAT_PA1	R	0x13	Average Active Power of Channel A.	
DSP_DAT_QA1	R	0x14	Average Reactive Power of Channel A.	
DSP_DAT_SA1	R	0x15	Average Apparent Power of Channel A.	
DSP_DAT_PB1	R	0x16	Average Active power of Channel B.	
DSP_DAT_QB1	R	0x17	Average Reactive power of Channel B.	
DSP_DAT_SB1	R	0x18	Average Apparent Power of Channel B.	
DSP_DAT_RMS1U	R	0x19	Average RMS of Voltage.	
DSP_DAT_RMS1IA	R	0x1A	Average RMS of Current A.	
DSP_DAT_RMS1IB	R	0x1B	Average RMS of Current B.	
DSP_DAT_CH1_AVG	R	0x1C	Average value of Fundamental wave of Channel 1.	
DSP_DAT_CH2_AVG	R	0x1D	Average value of Fundamental wave of Channel 2.	
DSP_DAT_RMSU_AV G	R	0x1E	Average RMS of Voltage for 10 or 12 cycles (chose by line frequency).	
DSP_DAT_RMSIA_AV G	R	0x1F	Average RMS of Current IA for 10 or 12 cycles (chose by line frequency).	
DSP_DAT_RMSIB_AV G	R	0×20	Average RMS of Current IB for 10 or 12 cycles (chose by line frequency).	
DSP_DAT_FRQ	R	0x21	Line Frequency.	
DSP_DAT_DCU	R	0x22	DC value of voltage channel.	
DSP_DAT_DCIA	R	0x23	DC value of current channel A.	
DSP_DAT_DCIB	R	0x24	DC value of Current channel B.	
DSP_CFG_CALI_PA	R/W	0x25	To set gain calibration for the active power A.	0x00000000
DSP_CFG_DC_PA	R/W	0x26	To set offset calibration for the active power A.	0x00000000
DSP_CFG_CALI_QA	R/W	0x27	To set gain calibration for Reactive power A.	0x00000000
DSP_CFG_DC_QA	R/W	0x28	To set offset calibration for Reactive power A.	0x00000000
DSP_CFG_CALI_PB	R/W	0x29	To set gain calibration for Active power B.	0×00000000

DSP_CFG_DC_PB	R/W	0x2A	To set offset calibration for Active power B.	0x0000000
DSP_CFG_CALI_QB	R/W	0x2B	To set gain calibration for Reactive power B.	0x0000000
DSP_CFG_DC_QB	R/W	0x2C	To set offset calibration for Reactive power B.	0x00000000
DSP_CFG_CALI_RMS U	R/W	0x2D	To set gain calibration for Voltage RMS.	0×00000000
DSP_CFG_RMS_DCU	R/W	0x2E	To set offset calibration for Voltage RMS.	0×00000000
DSP_CFG_CALI_RMSI A	R/W	0x2F	To set gain calibration for Current RMS A.	0×00000000
DSP_CFG_RMS_DCIA	R/W	0x30	To set offset calibration for Current RMS A.	0×00000000
DSP_CFG_CALI_RMSI B	R/W	0x31	To set gain calibration for Current RMS B.	0x00000000
DSP_CFG_RMS_DCIB	R/W	0x32	To set offset calibration for Current RMS B.	0×00000000
DSP_CFG_PHC	R/W	0x33	Phase Error Calibration Register. [10:0]= phase error calibration value for channel A [26:16]= phase error calibration value for channel B, where the range is from -766~767.	0×00000000
DSP_CFG_DCU	R/W	0x34	To set the DC calibration for the voltage channel.	0x00000000
DSP_CFG_DCIA	R/W	0x35	To set the DC calibration for the current channel A.	0×00000000
DSP_CFG_DCIB	R/W	0x36	To set the DC calibration for the current channel B.	0×00000000
DSP_CFG_BPF	R/W	0x37	Band-pass filter coefficient. Related to setting the DSP_MODE by Bit[7:4] of metering control register 0 (0x02,DSP_CTRL0). Setting 0x806764B6 at DSP_MODE=0, 1, 2; Setting 0x80DD7A8C at DSP_MODE=6, 7; Setting 0x82B465F0 at DSP_MODE=8. The frequency of other modes would be not	0×00000000

			supported to measure, so setting to 0x0.		
DSP_CFG_CKSUM	R/W	0x38	Configuration register for checksum.	0x00000000	
			Anti-creep threshold for energy accumulator.		
			When the accumulated value of the anti-creep		
			energy accumulator over this threshold and the		
EGY_PROCTH	R/W	0x39	accumulated value of the high-speed energy	0x00000000	
			accumulator under this threshold, the		
			accumulated value of the high-speed energy		
			accumulator will be cleared.		
			Accumulation threshold for energy accumulator.		
			Because the energy accumulator was 46Bit, the		
		0.24	accumulated value of the high-speed energy		
EGY_PWRTH	R/W	UX3A	accumulator equals to this threshold*16384; the		
			ccumulated value of the low-speed energy		
			accumulator equals to this value*4.		
EGY_CONST1	R/W	0x3B	Energy accumulator 1 accumulating constant.	0x00000000	
EGY_OUT1L	R/W	0x3C	Energy accumulator 1 accumulating lower bit.	0x00000000	
	R/W	0x3D	Energy accumulator 1 accumulating higher bit.		
EGY_OUTTH			Effective for lower 14 bit.		
EGY_CFCNT1	R	0x3E	Energy accumulator 1 pulse counter.	0×00000000	
EGY_CONST2	R/W	0x3F	Energy accumulator 2 accumulating constant.	0x00000000	
EGY_OUT2L	R/W	0x40	Energy accumulator 2 accumulating lower bit.	0x00000000	
		0	Energy accumulator 2 accumulating higher bit.	000000000	
EGY_OUI2H	R/W	0X41	Effective for lower 14 bit.	0x00000000	
EGY_CFCNT2	R	0x42	Energy accumulator 2 pulse counter.	0×00000000	
EGY_CONST3	R/W	0x43	Energy accumulator 3 accumulating constant.	0x00000000	
EGY_OUT3	R/W	0x44	Energy accumulator 3 accumulating value.	0x00000000	
EGY_CFCNT3	R	0x45	Energy accumulator 3 pulse counter.	0×00000000	
EGY_CONST4	R/W	0x46	Energy accumulator 4 accumulating constant.	0×00000000	
EGY_OUT4	R/W	0x47	Energy accumulator 4 accumulating value.	0x00000000	

EGY_CFCNT4	R	0x48	Energy accumulator 4 pulse counter.	0×00000000
EGY_CONST5	R/W	0x49	Energy accumulator 5 accumulating constant.	0x00000000
EGY_OUT5	R/W	0x4A	Energy accumulator 5 accumulating value.	0×00000000
EGY_CFCNT5	R	0x4B	Energy accumulator 5 pulse counter.	0x00000000
EGY_CONST6	R/W	0x4C	Energy accumulator 6 accumulating constant.	0x00000000
EGY_OUT6	R/W	0x4D	Energy accumulator 6 accumulating value.	0×00000000
EGY_CFCNT6	R	0x4E	Energy accumulator 6 pulse counter.	0x00000000
EGY_CONST7	R/W	0x4F	Energy accumulator 7 accumulating constant.	0x00000000
EGY_OUT7	R/W	0×50	Energy accumulator 7 accumulating value.	0×00000000
EGY_CFCNT7	R	0x51	Energy accumulator 7 pulse counter.	0×00000000
EGY_CONST8	R/W	0x52	Energy accumulator 8 accumulating constant.	0x00000000
EGY_OUT8	R/W	0x53	Energy accumulator 8 accumulating value.	0×00000000
EGY_CFCNT8	R	0x54	Energy accumulator 8 pulse counter.	0×00000000
DSP_OV_THL	R/W	0x55	To set the lower threshold for the power-creep detection.	0×00000000
DSP_OV_THH	R/W	0x56	To set the upper threshold for the power-creep detection.	0×00000000
DSP_SWELL_THL	R/W	0x57	To set the lower threshold for the voltage swell.	0x00000000
DSP_SWELL_THH	R/W	0x58	To set the upper threshold for the voltage dip.	0×00000000
DSP_DIP_THL	R/W	0x59	To set the lower threshold for the voltage dip.	0×00000000
DSP_DIP_THH	R/W	0x5A	To set the upper threshold for the voltage dip.	0×00000000
FD_OVTH	R/W	0x5B	To set over-voltage threshold for fast detection. Bit width is 30bit.	0x00000000
FD_LVTH	R/W	0x5C	To set under-voltage threshold for fast detection. Bit width is 30bit.	0×00000000
FD_IA_OCTH	R/W	0x5D	To set over-current threshold in current channel A for fast detection. Bit width is 30bit.	0x00000000
FD_IA_LCTH	R/W	0x5E	To set under-current threshold in current channel A for fast detection. Bit width is 30bit.	0×00000000

FD_IB_OCTH	R/W	0x5F	To set over-current threshold in current channel B for fast detection. Bit width is 30bit.	0x00000000
FD_IB_LCTH	R/W	0x60	To set under-current threshold in current channel B for fast detection. Bit width is 30bit.	0x00000000
DSP_PHS_STT	R/W	0x61	To control the phase measurement. Enable phase measurement once for writing operation.	
DSP_PHS_U	R	0x62	Voltage phase.	1
DSP_PHS_UN	R	0x63	Voltage waveform data which before zero- crossing.	0
DSP_PHS_UP	R	0x64	Voltage waveform data which after zero-crossing.	0×80000000
DSP_PHS_I	R	0x65	Current phase.	1
DSP_PHS_IN	R	0x66	Current waveform data which before zero- crossing.	0
DSP_PHS_IP	R	0x67	Current waveform data which after zero-crossing.	0x80000000
DAT_WAVE	R	0x69	Waveform data reading. It can repeatable reading the address and obtain the overall waveform data. If there is no need to read all data, it would be reset the bit 31 of DSP_CTRL5 to read address.	0
DAT_SWELL_CNT	R/C	0x6A	Voltage swell time records, half-wave as unit. Effective as 24bit. Writing any value into this address would be clear this counter to zero.	0
DAT_DIP_CNT	R/C	0x6B	Voltage dip time records, half wave as unit. Effective as 24bit. Writing any value into this address would be clear this counter to zero.	0
SYS_SFTRST	w	0x6C	Software reset register. Writing 0x4572beaf into this address would be happen software reset once.	
SYS_BAUDCNT1	R	0x70	This register stores the system clock count value of the first bit of the UART frame header sent by	

			V93XX.	
SYS_BAUDCNT8	R	0x71	This register stores the system clock count value of the 8 bits of the UART frame header received by V93XX.	
SYS_INTSTS	R/C	0x72	Interrupt status register.	
SYS_INTEN	R/W	0x73	Interrupt enable register.	0x00000000
SYS_STS	R	0x74	System status register.	
SYS_MISC	R/W	0x75	System control register.	
SYS_BLK0_ADDR	R/W	0x79	Register for block reading address 0.	0
SYS_BLK1_ADDR	R/W	0x7A	Register for block reading address 1.	0
SYS_BLK2_ADDR	R/W	0x7B	Register for block reading address 2.	0
SYS_BLK3_ADDR	R/W	0x7C	Register for block reading address 3.	0
SYS_IOCFGX0	R/W	0x7D	Output configuration register for P0, P1, P2 and P3.	
SYS_IOCFGX1	R/W	0x7E	Output configuration register for P4, P5 and P6.	0
SYS_VERSION	R	0x7F	Present hardware version.	

2.2. Analog Control Registers

When power-on reset (POR), RSTN pin reset, RX reset, or global software reset occurs, all analog control registers will be reset to the default value. The default value in the following tables of this section are in format of hexadecimal.

The address range of Analog Control Register is $0 \times 00 \sim 0 \times 01$ which all is readable and writable. Also, all the metering control registers need to be configuration verification and self-checking.

2.2.1. ANA_CTRL0 Register

Table 2-2 Analog Control Register 0 (0x00, ANA_CTRL0)

0x00, R/W, Analog Control Register 0, ANA_CTRL0					
Bit		Default Value	Description		
31:18	Reserved	0	These bits must hold its default value for proper operation.		
17:14	Reserved	0	These bits must hold its default value for proper operation.		
13	MEA	0	To select the analog input for Channel IB. 0: differential IB input 1: Reserved		
12	Reserved	0	The bit must hold its default value for proper operation.		
11	SHORT_I	0	Current IA channel ADC input short circuit. 0: short circuit 1: Normal		
10	SHORT_V	0	Voltage U channel ADC input short circuit. 0: short circuit 1: Normal		
9:0	Reserved	0	These bits must hold its default value for proper operation.		

2.2.2. ANA_CTRL1 Register

0x01, R/W, Analog Control Register 1, ANA_CTRL1				
Bit Val		Default Value	Description	
31:30	ADCKSEL[1:0]	0	The options of clock frequency divider rate for the ADC	

0x01, R/W, Analog Control Register 1, ANA_CTRL1

Bit Default Value		Default Value	Description 00 corresponds to 819.2 KHz. 00: ×1 01: ×2
			10: ×1/4 11: ×1/2
29:24	RCHTRIM[5:0]	0	To adjust the 6.5M RC frequency. 000000~011111: step-up the frequency by 1.25% 100000~111111: step-down the frequency by 1.25%
23	Reserved	0	The bit must hold its default value for proper operation.
22	RCCLK_PD	0	To enable the 6.5M RC oscillator. 0: enable 1: disable This bit must be set to 0 for proper operation.
21:15	Reserved	0	These bits must hold its default value for proper operation.
14:12	GIB[2:0]	0	To adjust the gain of current ADC in the channel B. 000: 4 001: 1 010: 32 011: 16 100/101/110/111: prohibited GIB[2:0] is recommended set to 000 for proper operation.
11	GU	0	To adjust the gain of voltage ADC.

Vango Technologies, Inc.

0x01, R/W, Analog Control Register 1, ANA_CTRL1

	2	. .		
Bit		Default Value	Description	
			0: 8	
			1:4	
			This bit must be set to 0 for proper operation.	
			To adjust the gain of current ADC in the channel A.	
			000: 32	
			001: 16	
10:8	GIA[2:0]	0	010: 4	
			011: 1	
			100~111: prohibited	
			GIA[2:0] is recommended set to 000 for proper operation.	
			The external input CTI clock enable.	
7	XRST_PD	0	0: enable	
			1: disable	
6:5	Reserved	0	These bits must hold its default value for proper operation.	
			To roughly adjust the temperature coefficient of the	
			Bandgap circuit.	
			00: 0 ppm	
4:3	RESTL[1:0]	0	01: -58 ppm	
			10: +111 ppm	
			11: +56 ppm	
			To finely adjust the temperature coefficient of the Bandgap	
2:0	REST[2:0]	0	circuit.	

 Ox01, R/W, Analog Control Register 1, ANA_CTRL1

 Bit
 Default Value
 Description

 000: 0 ppm
 001: +7 ppm

 010: +14 ppm
 010: +14 ppm

 011: +28 ppm
 100: -32 ppm

 101: -21 ppm
 101: -14 ppm

 111: -7 ppm
 111: -7 ppm

2.3. System Control & Status Register

When power-on reset (POR), RSTN pin reset, RX reset, or global software reset occurs, all system control registers will be reset to the default value. The default value in the following tables of this section are in format of hexadecimal.

In the V93XX, the mainly functions of System Control Register is controlling interface, interrupt, RAM, and IO output. SYS_INTEN (0x73) controls enable interruption, SYS_INTSYS (0x72) is interrupted status register. Bit[4: 0] of SYS_MISC (0x75) are used for configuring the interface operation, interrupting pin output whether reverse, whether turn off the energy accumulator when power down and whether turn off the energy accumulator when in wrong calibration. SYS_RAMADDR (0x77) is controlling internal RAM address. SYS_RAMDATA is internal RAM data registers. SYS_BLK0_ADDR~SYS_BLK3_ADDR are blocked reading address. SYS_IOCFGX0~SYS_IOCFGX1 are the control register of IO output

2.3.1. SYS_BAUDCNT1 Register

Table 2-4 UART transmitting data 1bit count value (0x70, SYS_BAUDCNT1)

0x70, l	0x70, UART transmitting data 1bit count value, SYS_BAUDCNT1					
bit R/W Default Value		Default Value	Description			
31:14	-	-	-	Reserved.		
13:0	BAUDCNT1	R		This register stores the system clock count value of the first bit of the UART frame header sent by V93XX.		

2.3.2. SYS_BAUDCNT8 Register

Table 2-5 UART receiving data 8bit count value (0x71, SYS_BAUDCNT8)

0x71, UART receiving data 8bit count value, SYS_BAUDCNT8					
Bit R/W Default Value		Default Value	Description		
31:17	-	-	-	Reserved.	
16:0	BAUDCNT8	R		This register stores the system clock count value of the	
				o bits of the OART frame fielder feceived by V93XX.	

2.3.3. SYS_INTSTS Register

Table 2-6 System Interrupt Register (0x72, SYS_INTSTS)

0x72, System Interrupt Register, SYS_INTSTS					
Bit		R/W	Default value	Description	
31:30		-	-	Reserved.	
29	EGY2OV	R/C	0	 Flag bit for high-speed energy accumulator 2 overflow interrupt Read 0: high-speed energy accumulator overflow did not happen Read 1: high-speed energy accumulator overflow happened 	

0x72, System Interrupt Register, SYS_INTSTS				
Bit		R/W	Default value	Description
				Write 0: no effects Write 1: clear the bit
28	EGY1OV	R/C	0	Flag bit for high-speed energy accumulator 1 overflow interrupt Read 0: high-speed energy accumulator overflow did not happen Read 1: high-speed energy accumulator overflow happened Write 0: no effects Write 1: clear the bit
27	UDIP	R/C	0	Flag bit for the voltage dip. Read 0: the voltage dip did not happen Read 1: the voltage dip happened Write 0: no effects Write 1: clear the bit
26	USWELL	R/C	0	Flag bit for the voltage swell. Read 0: the voltage swell did not happen Read 1: the voltage swell happened Write 0: no effects Write 1: clear the bit
25	IBLC	R/C	0	Flag bit for the IB under-current. Read 0: IB under-current did not happen Read 1: IB under-current happen Write 0: no effects Write 1: clear the bit
24	IBOC	R/C	0	Flag bit for the IB over-current. Read 0: IB over-current did not happen Read 1: IB over-current happened

0x72, System Interrupt Register, SYS_INTSTS					
Bit		R/W	Default value	Description	
				Write 0: no effects	
				Write 1: clear the bit	
				Flag bit for the IA under-current.	
				Read 0: IA under-current did not happen	
23	IALC	R/C	0	Read 1: IA under-current happened	
				Write 0: no effects	
				Write 1: clear the bit	
				Flag bit for the IA over-current.	
				Read 0: IA over-current did not happen	
22	IAOC	R/C	0	Read 1: IA over-current happened	
				Write 0: no effects	
				Write 1: clear the bit	
	ULV	R/C	0	Flag bit for the channel U under-voltage.	
				Read 0: channel U under-voltage did not happen	
21				Read 1: channel U under-voltage happened	
				Write 0: no effects	
				Write 1: clear the bit	
	UOV	R/C	0	Flag bit for the channel U over-voltage.	
				Read 0: channel U over-voltage did not happen	
20				Read 1: channel U over-voltage happened	
				Write 0: no effects	
				Write 1: clear the bit	
				Flag bit for the SPI communication error.	
				When any one of condition below happens, the bit	
				will set to "1".	
19	SPI_ERR	R/C	0	A, SPI overtime (rising edge of each 2 SPCK needs	
				to shorter than 20 ms)	
				B, SPI CLK counter error (the number of clocks	
				not equals to 48 at 4-wire SPI)	

0x72, System Interrupt Register, SYS_INTSTS				
Bit		R/W	Default value	Description
				Read 0: SPI error did not happen
				Read 1: SPI error happened
				write 0: no effects
				write 1: clear the bit
18:17	Reserved	-	-	-
				Flag bit for the UART communication error.
				When any one of condition as below happens, the
				bit will set to "1".
			0	A: UART overtime (each 2 Bytes needs to shorter
				than 20 ms)
16	UART_ERR	R/C		B: UART checksum bit error
				C: UART checksum byte error
				Read 0: UART error did not happen
				Read 1: UART happened
				write 0: no effects
				write 1: clear the bit
				Flag bit for active waveform uploading finished.
	DMA_FINISH	R/C	0	Read 0: active waveform uploading did not finish
15				Read 1: active waveform uploading finished
				Write 0: no effects
				Write 1: clear the bit
				Flag bit for checksum error. Checksum from
				correct to error, it would be interrupted.
				Read 0: checksum error did not happen
14	CKERR	R/C		Read 1: checksum error happened
				Write 0: no effects
				Write 1: clear the bit
				Flat bit for CTI external input clock status.
13	HSE_FAIL	R/C		Read 0: CTI external input clock error has

0x72, System Interrupt Register, SYS_INTSTS				
Bit		R/W	Default value	Description
				occurred I did not happen
				Read 1: CTI external input clock error has
				happened
				Write 0: no effects
				Write 1: clear the bit
				Flag bit for reference error
				Read 0: reference error did not happen
12	REF_ERR	R/C		Read 1: reference error happened
				Write 0: no effects
				Write 1: clear the bit
	BIST_ERR	R/C		Flag bit for BIST error
				Read 0: BIST error did not happen
11				Read 1: BIST error happened
				Write 0: no effects
				Write 1: clear the bit
				Flag bit for current zero-crossing, it could to select
				the channel IA or IB by bit20 of metering control
				register (Table 2-19 Metering Control Register 2
				$(0x03, DSP_CTRL1)$, and to select the direction of
				zero-crossing by bit19~bit18 of metering control
10	ISIGN	R/C		register (0x03,DSP_CTRL1).
				Read 0: current zero-crossing did not happen
				Read 1: current zero-crossing happened
				Write 0: no effects
				Write 1: clear the bit
				Flag bit for voltage zero-crossing, it could to select
				the direction of zero-crossing by bit19~bit18 of
9	USIGN	R/C		DSP_CTRL1
				Read 0: voltage zero-crossing did not happen

0x72, System Interrupt Register, SYS_INTSTS R/W Bit Default value Description Read 1: voltage zero-crossing happened Write 0: no effects Write 1: clear the bit Flag bit for waveform storage overflow. Read 0: waveform storage did not overflow Read 1: waveform storage already overflowed 8 WAVE OVERFLOW R/C 0 Write 0: no effects Write 1: clear the bit Flag bit for waveform storage status. Read 0: waveform storage did not finish Read 1: waveform storage already finished 7 WAVE_STORE R/C 0 Write 0: no effects Write 1: clear the bit Flag bit for waveform updating. Read 0: waveform data did not update Read 1: waveform data updated WAVE_UPD 6 R/C Write 0: no effects Write 1: clear the bit Flag bit for instantaneous RMS data updating. Read 0: instantaneous RMS data did not update Read 1: instantaneous RMS data updated 5 R/C CURRMS_UPD 0 Write 0: no effects Write 1: clear the bit Flag bit for average RMS data updating. Read 0: average RMS data did not update Read 1: average RMS data updated 4 AVGRMS UPD R/C 0 Write 0: no effects Write 1: clear the bit Flag bit for instantaneous power data updating. CURPOWER_UPD R/C 0 3

0x72, System Interrupt Register, SYS_INTSTS				
Bit		R/W	Default value	Description
				Read 0: instantaneous power data did not update
				Read 1: instantaneous power data updated
				Write 0: no effects
				Write 1: clear the bit
				Flag bit for average power data updating.
				Read 0: average power data did not update
2	AVGPOWER_UPD	R/C	0	Read 1: average power data updated
				Write 0: no effects
				Write 1: clear the bit
	INTPDN	R/C	0	Flag bit for power down event. When the power
				input (VDD) is lower than 2.8V (\pm 7%), it would
				be triggered.
1				Read 0: power down did not happen
				Read 1: power down happened
				Write 0: no effects
				Write 1: clear the bit
				Flag bit for Phase measurement finished. This bit
				will clear automatically when starts to phase
				measurement.
0	INTUPHSDONE	R/C	0	Read 0: phase measurement did not finish
				Read 1: phase measurement already finished
				Write 0: no effects
				Write 1: clear the bit

2.3.4. SYS_INTEN Register

Table 2-7 System Interrupt Enable Register (0x73, SYS_INTEN)

0x73, System Interrupt Enable Register, SYS_INTEN				
Bit		R/W	Default Value	Description
31:30	Reserved		0	These bits must hold its default value for proper operation.
29	EGY2OV	R/W	0	Interrupt for high-speed energy accumulator 2 overflow 0: disable interrupt 1: enable interrupt
28	EGY1OV	R/W	0	Interrupt for high-speed energy accumulator 1 overflow 0: disable interrupt 1: enable interrupt
27	UDIP	R/W	0	Interrupt for the voltage dip. 0: disable interrupt 1: enable interrupt
26	USWELL	R/W	0	Interrupt for voltage swell. 0: disable interrupt 1: enable interrupt
25	IBLC	R/W	0	Interrupt for IB under-current. 0: disable interrupt 1: enable interrupt
24	IBOC	R/W	0	Interrupt for IB over-current. 0: disable interrupt 1: enable interrupt
23	IALC	R/W	0	Interrupt for IA under-current. 0: disable interrupt 1: enable interrupt

0x73, System Interrupt Enable Register, SYS_INTEN					
Bit		R/W	Default Value	Description	
22	IAOC	R/W	0	Interrupt for IA over-current. 0: disable interrupt 1: enable interrupt	
21	ULV	R/W	0	Interrupt for channel U under-voltage. 0: disable interrupt 1: enable interrupt	
20	υον	R/W	0	Interrupt for channel U over-voltage. 0: disable interrupt 1: enable interrupt	
19	SPI_ERR	R/W	0	Interrupt for SPI transmission error. 0: disable interrupt 1: enable interrupt	
18:17	Reserved			These bits must hold its default value for proper operation.	
16	UART_ERR	R/W	0	Interrupt for UART transmission error. 0: disable interrupt 1: enable interrupt	
15	DMA_FINISH	R/W	0	Waveform uploading finished. 0: disable interrupt 1: enable interrupt	
14	CKERR	R/W	0	Interrupt for checksum error. 0: disable interrupt 1: enable interrupt	
13	HSE_FAIL	R/W	0	Interrupt for CTI external input clock error. 0: disable interrupt	

0x73, System Interrupt Enable Register, SYS_INTEN				
Bit		R/W	Default Value	Description
				1: enable interrupt
				Interrupt for reference error.
12	REF_ERR	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for BIST error.
11	BOST_ERR	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for the current zero-crossing.
10	ISIGN	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for the voltage zero-crossing.
9	USIGN	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for the Waveform storage overflow.
8	WAVE_OVERFLOW	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for the Waveform storage status.
7	WAVE_STORE	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for the Waveform data updating.
6	WAVE_UPD	R/W	0	0: disable interrupt
				1: enable interrupt
				Interrupt for the Instantaneous RMS data
5	CURRMS_UPD	R/W	0	updating.
				0: disable interrupt

0x73, System Interrupt Enable Register, SYS_INTEN				
Bit		R/W	Default Value	Description
				1: enable interrupt
4	AVGRMS_UPD	R/W	0	Interrupt for the average RMS data updating. 0: disable interrupt 1: enable interrupt
3	CURPOWER_UPD	R/W	0	Interrupt for the Instantaneous power data updating. 0: disable interrupt 1: enable interrupt
2	AVGPOWER_UPD	R/W	0	Interrupt for the Average power data updating. 0: disable interrupt 1: enable interrupt
1	INTPDN	R/W	0	Interrupt for the Power down. 0: disable interrupt 1: enable interrupt
0	INTUPHSDONE	R/W	0	Interrupt for the Phase measurement finished. 0: disable interrupt 1: enable interrupt

2.3.5. SYS_STS Register

Table 2-8 System Status Register (0x74, SYS_STS)

0x74, System Status Register, SYS_STS				
Bit		R/W	Default Value	Description
31	-	-	-	Reserved

0x74, System Status Register, SYS_STS				
Bit		R/W	Default Value	Description
30	UDIP	R	0	Status bit for the voltage dip. 0: not happened 1: happened
29	USWELL	R	0	Status bit for voltage swell. 0: not happened 1: happened
28	IBLC	R	0	Status bit for IB under-current. 0: not happened 1: happened
27	IBOC	R	0	Status bit for IB over-current. 0: not happened 1: happened
26	IALC	R	0	Status bit for IA under-current. 0: not happened 1: happened
25	IAOC	R	0	Status bit for IA over-current. 0: not happened 1: happened
24	ULV	R	0	Status bit for channel U under-voltage. 0: not happened 1: happened
23	UOV	R	0	Status bit for channel U over-voltage. 0: not happened 1: happened

0x74, S	0x74, System Status Register, SYS_STS				
Bit		R/W	Default Value	Description	
22:20	RST_SOURCE	R	-	Status bit for reset. 1: power on reset 2: external reset 3: RX low-level voltage reset 4: software reset Others are reserved.	
19	CRP_OUT2	R	0	Status bit for power-creep detection for energy accumulator 2. 0: start 1: power-creep	
18	CRP_OUT1	R	0	Status bit for power-creep detection for energy accumulator 1. 0: start 1: power-creep	
17	SBCREEP	R	-	Status bit for no-load detection for apparent power Channel B. 0: start 1: power-creep	
16	QBCREEP	R	-	Status bit for power-creep detection for reactive power Channel B. 0: start 1: power-creep	

0x74, System Status Register, SYS_STS				
Bit		R/W	Default Value	Description
15	PBCREEP	R	-	Status bit for power-creep detection for active power Channel B. 0: start 1: power-creep
14	SACREEP	R	-	Status bit for power-creep detection for apparent power Channel A. 0: start 1: power-creep
13	QACREEP	R	-	Status bit for power-creep detection for reactive power Channel A. 0: start 1: power-creep
12	PACREEP	R	-	Status bit for power-creep detection for active power Channel A. 0: start 1: power-creep
11	QBSIGN	R	0	Sign bit for reactive power Channel B. Under the power-creep detection, no refresh the flag bit.0: positive1: negative
10	PBSIGN	R	0	Sign bit for active power Channel B. Under the power- creep detection, no refresh the flag bit. 0: positive 1: negative

0x74, System Status Register, SYS_STS				
Bit		R/W	Default Value	Description
9	QASIGN	R	0	Sign bit for reactive power Channel A. Under the power-creep detection, no refresh the flag bit.0: positive1: negative
8	PASIGN	R	0	Sign bit for active power Channel A. Under the power- creep detection, no refresh the flag bit.0: positive1: negative
7	-	-	-	Reserved
6	HSEFAIL	R	0	Status bit for CTI external input clock status. 0: normal 1: abnormal
5	BISTERR	R	0	Status bit for SRAM BIST. 0: SRAM BIST normal 1: SRAM BIST error
4	RAMINITIAL		0	Status bit for RAM initialization finished 0: failed 1: finished
3	PHSDONE		0	Status bit for Phase measurement finished 0: failed 1: finished

0x74, System Status Register, SYS_STS				
Bit		R/W	Default Value	Description
2	PD	R	0	<pre>Status bit for power down. When the power input (VDD) is lower than 2.8V (±7%), power down event happens. 0: VDD >= 2.8V (±7%) 1: VDD < 2.8V (±7%)</pre>
1	REFLK	R	0	Status bit for the reference of ADC whether electric leaking. 0: ADC reference circuit normal 1: ADC reference circuit decrease is greater than 2.5%.
0	CHECKSUM	R	1	 Status bit for Checksum. Checksum calculation address range: 0x0 ~ 0x7, 0x25 ~ 0x3A, 0x55 ~ 0x60 0: checksum correct 1: checksum incorrect

2.3.6. SYS_MISC Register

Table 2-9 System Control Register (0x75, SYS_MISC)

0x75, system Control Register, SYS_MISC					
Bit		R/W	Default Value	Description	
31:25	Reserved	R	0	These bits must hold its default value for proper operation.	
24:16	WAVE_STORE_CNT	R	0	Count value for Waveform storage.	
15:6	Reserved		0	These bits must hold its default value for proper operation.	
5	BIST_EGY_EN	R/W	0	When RAM self-test has error, force the energy	

0x75, s	0x75, system Control Register, SYS_MISC						
Bit		R/W	Default Value	Description			
				accumulator and CF output to disable.			
				0: enable			
				1: disable			
				The control bits for the energy accumulator and			
				CF counter (Bit[15] and Bit[7:6]) in DSP_CTRL1			
				register will not change.			
				Although the DSP_CTRL1 register value has not			
				changed, the energy accumulator and CF output			
				functions will not be restored automatically and			
				need to be opened manually by the user after			
				the state returns to normal.			
				When checksum has error, force the energy			
				accumulator and CF output to disable.			
				0: enable			
				1: disable			
				The control bits for the energy accumulator and			
4	CK_EGY_EN	R/W	0	CF counter (Bit[15] and Bit[7:6]) in DSP_CTRL1			
				register will not change.			
				Although the DSP_CTRL1 register value has not			
				changed, the energy accumulator and CF output			
				functions will not be restored automatically and			
				need to be opened manually by the user after			
				the state returns to normal.			
				When power-down, force the energy			
3	PD_EGY_EN	R/W	0	accumulator and CF output to disable.			
				0: enable			

0x75, system Control Register, SYS_MISC R/W Default Value Bit Description 1: disable The control bits for the energy accumulator and CF counter (Bit[15] and Bit[7:6]) in DSP_CTRL1 register will not change. Although the DSP_CTRL1 register value has not changed, the energy accumulator and CF output functions will not be restored automatically and need to be opened manually by the user after the state returns to normal. Reverse output on Interrupted pin. 0: interrupt pin triggered by high-level voltage, R/W 2 INTPOL 0 and default is low-level voltage. 1: interrupt pin triggered by low-level voltage, and default is high-level voltage. To enable the UART continue writing mode. 1 UARTBURSTEN R/W 0 0: enable 1: disable To enable baud rate self-adapting for UART. It suggests enabling before changing system CLK. 0: disable Baud rate self-adapting function. Baud rate self-adapting only for first time 0 UARTAUTOEN R/W 0 communication. 1: enable Baud rate self-adapting function. Baud rate self-adapting for every time communication.

2.3.7. SYS_BLKX Register

Г

0x79, Block-reading Address Register 0, SYS_BLK0_ADDR					
Bit		R/W	Default Value	Description	
31:24	ADDR3	R/W	0	Block-reading address 3.	
23:16	ADDR2	R/W	0	Block-reading address 2.	
15:8	ADDR1	R/W	0	Block-reading address 1.	
7:0	ADDR0	R/W	0	Block-reading address 0.	

Table 2-11 Block-reading	Address Register 1	(0x7A, SYS	_BLK1_ADDR)
--------------------------	--------------------	------------	-------------

0x7A, Bl	0x7A, Block-reading Address Register 1, SYS_BLK1_ADDR					
Bit R/W		R/W	Default Value	Description		
31:24	ADDR7	R/W	0	Block-reading address 7.		
23:16	ADDR6	R/W	0	Block-reading address 6.		
15:8	ADDR5	R/W	0	Block-reading address 5.		
7:0	ADDR4	R/W	0	Block-reading address 4.		

Table 2-12 Block-reading Address Register 2 (0x7B, SYS_BLK2_ADDR)

0x7B, Bl	0x7B, Block-reading Address Register 2, SYS_BLK2_ADDR					
Bit		R/W	Default Value	Description		
31:24	ADDR11	R/W	0	Block-reading address 11.		
23:16	ADDR10	R/W	0	Block-reading address 10.		
15:8	ADDR9	R/W	0	Block-reading address 9.		
7:0	ADDR8	R/W	0	Block-reading address 8.		

Table 2-13 Block-reading Address Register 3 (0x7C, SYS_BLK3_ADDR)

0x7C, Block-reading Address Register 3, SYS_BLK3_ADDR					
Bit		R/W	Default Value	Description	
31:24	ADDR15	R/W	0	Block-reading address 15.	
23:16	ADDR14	R/W	0	Block-reading address 14.	
15:8	ADDR13	R/W	0	Block-reading address 13.	
7:0	ADDR12	R/W	0	Block-reading address 12.	

2.3.8. SYS_IOCFGXX Register

Table 2-14 IO	Configuration	Register 0	(0x7D, SYS	_IOCFGX0)
---------------	---------------	------------	------------	-----------

0x7D, 1	0x7D, IO Configuration Register 0, SYS_IOCFGX0					
Bit		R/W	Default Value	Description		
31:24	P3CFG	R/W	0	Configuration as the same as P0CFG.		
23:16	P2CFG	R/W	0	Configuration as the same as P0CFG.		
15:8	P1CFG	R/W	0	Configuration as the same as P0CFG.		
7:0	P0CFG	R/W	0	Bit[7:6]:		
				 00: as shown in the Table 2-15, it can be configured the different combination interruption. 10: CF1 output. Bit[5:0] can be configured arbitrary value. 01: CF2 output. Bit[5:0] can be configured arbitrary value. 11: Actively energy accumulation data uploads. Bit[5:0] can 		
				 10: CF1 output. Bit[5:0] can be configured arbitrary val 01: CF2 output. Bit[5:0] can be configured arbitrary val 11: Actively energy accumulation data uploads. Bit[5:0 be configured arbitrary value. 		

Table 2-15 P0CFG Bit[5:0] Description

Bit[5:3]	Bit[2:0]	
0	0	High impedance.

0	1	Current zero-crossing interruption.
0	2	Voltage zero-crossing interruption.
0	3	Current zero-crossing interruption.
0	4	Voltage zero-crossing interruption.
0	5	High speed energy accumulator 1 overflow interrupt
0	6	High speed energy accumulator 2 overflow interrupt
0	7	1 st type interruption.
1	0	Waveform refresh interruption.
1	1	Instantaneous RMS refresh interruption.
1	2	Average RMS refresh interruption.
1	3	Instantaneous power refresh interruption.
1	4	Average power refresh interruption.
1	5	Waveform storage finish interruption.
1	6	Waveform storage address overflow interruption.
1	7	Waveform data upload finish interruption.
2	0	IB channel under-current interruption.
2	1	IB channel over-current interruption.
2	2	IA channel under-current interruption.
2	3	IA channel over-current interruption.
2	4	Voltage Channel under-voltage interruption.
2	5	Voltage Channel over-voltage interruption.
2	6	Voltage dip interruption.
2	7	Voltage swell interruption.

3	0	Reference error.
3	1	CTI external input clock error.
3	2	SPI communication error interruption.
3	3	UART communication error interruption.
3	4	Power-down interruption.
3	5	Parameter self-checking error interruption.
3	6	Phase test finish interruption.
3	7	RAM self-checking error.
4	0	1 st type interruption.
4	1	2 nd type interruption.
4	2	3 rd type interruption.
4	others	4 th type interruption.
5	0	3 rd type interruption.
5	1	1 st and 2 nd type interruption.
5	2	1 st and 3 rd type interruption.
5	3	1 st and 4 th type interruption.
5	4	2 nd and 3 rd type interruption.
5	5	2 nd and 4 th type interruption.
5	6	3 rd and 4 th type interruption.
5	7	All interruption.
6	0	1 st , 2 nd and 3 rd type interruption.
6	1	1 st , 2 nd and 4 th type interruption.
6	2	1 st , 3 rd and 4 th type interruption.

6	3	2 nd , 3 rd and 4 th type interruption.			
6	others	All interruption.			
7	1	Active waveform updating for chip select of SPI, SPIMAS_SPCSN.			
7	2	Active waveform updating for SPI clock, SPIMAS_SPCK.			
7	4	Active waveform updating for SPI data, SPIMAS_SPDO.			
7	others	Prohibited output.			

While the IO interface is not configured (i.e. all zero), output is high impedance.

- 1st type interruption: current zero-crossing interruption, voltage zero-crossing interruption, highspeed energy accumulator 1/2 overflow interruption.
- 2nd type interruption: waveform refreshes interruption, instantaneous RMS refresh interruption, average RMS refreshes interruption, instantaneous power value refresh interruption, average power value refreshes interruption, waveform storage finish interruption, waveform storage overflow interruption and waveform data upload finished interruption.
- 3rd type interruption: IB channel under-current interruption, IB channel over-current interruption, IA channel under-current interruption, IA channel over-current interruption, voltage channel undervoltage interruption, voltage channel over-voltage interruption, voltage dip interruption and voltage swell interruption.
- 4th type interruption: SPI communicating error interruption, UART communicating error interruption, parameters self-checking error interruption, phase measurement finished interruption, power-down interruption, reference error interruption, CTI external input clock error interruption and RAM selfchecking error interruption.

0x7E, IO Configuration Register 1, SYS_IOCFGX1							
Bit		R/W	Default Value	Description			
31:24	Reserved		0	These bits must hold its default value for proper operation.			
23:16	P6CFG	R/W	0	Configuration as the same as P0CFG.			

Table 2-16 IO Configuration Register 1 (0x7E, SYS_IOCFGX1)

0x7E, I	0x7E, IO Configuration Register 1, SYS_IOCFGX1						
Bit		R/W	Default Value	Description			
15:8	P5CFG	R/W	0	Configuration as the same as P0CFG.			
7:0	P4CFG	R/W	0	Configuration as the same as P0CFG.			

2.3.9. SYS_VERSION Register

Table 2-17 Version Information Register (0x7F, SYS_VERSION)

0x7F, V	0x7F, Version Information Register, SYS_VERSION						
Bit R/W			Default Value	Description			
31:0	VERSION	R	-	Present hardware version.			

2.4. Metering Control Registers

When power-on reset (POR), RSTN pin reset, RX reset, or global software reset occurs, all metering control registers will be reset to the default value. The default value in the following tables of this section are in format of hexadecimal.

All the metering control registers need to be configuration verification and self-checking.

2.4.1. DSP_CTRL0 Register

Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0)

0x02, F	0x02, R/W, Metering Control Register 0, DSP_CTRL0					
Bit		R/W	Default Value	Description		
31	CURDAT_RATE	R/W	0	Double refresh time for Instantaneous power value and RMS value. 0: refresh time for instantaneous power value is 20 ms and instantaneous RMS value is 10 ms. 1: refresh time for instantaneous power value is 40		

0x02, R/W, Metering Control Register 0, DSP_CTRL0					
Bit		R/W	Default Value	Description	
				ms and instantaneous RMS value is 20 ms.	
30	Reserved		0	The bit must hold its default value for proper operation.	
29:28	FRQ_SEL	R/W	0	Source comes from the register value of DSP_DAT_FRQ. 00: accumulation value for line frequency test value of 16 cycles (the default update time is 320 ms) 01: line frequency test value of 1 cycle (the default update time is 20 ms) 10: line frequency test value of 64 cycles (the default update time is 1280 ms) 11: Reserved	
27	DC_METER_MODE	R/W	0	To enable the DC metering mode. 0: disable 1: enable	
26: 25	-	1	0	The bit must hold its default value for proper operation.	
24	S_MODE	R/W	0	Source select for Apparent power calculation. 0: by RMS value 1: by power value	
23:20	CFG_CHANNEL	R/W	0	 Fundamental Channel selectable. 0: channel 1, fundamental active power A; channel 2, fundamental active power B 1: channel 1, fundamental active power A; channel 	

0x02, R/W, Metering Control Register 0, DSP_CTRL0					
Bit		R/W	Default Value	Description	
				2, fundamental voltage RMS	
				2: channel 1, fundamental active power A; channel	
				2, fundamental current RMS A	
				3: channel 1, fundamental active power A; channel	
				2, fundamental current RMS B	
				4: channel 1, fundamental active power B, channel	
				2, fundamental voltage RMS	
				5: channel 1, fundamental active power B; channel	
				2, fundamental current RMS A	
				6: channel 1, fundamental active power B; channel	
				2, fundamental current RMS B	
				7: channel 1, fundamental voltage RMS; channel 2,	
				fundamental current RMS A	
				8: channel 1, fundamental voltage RMS, channel 2,	
				fundamental current RMS B	
				9: channel 1, fundamental current RMS A; channel	
				2, fundamental current RMS B	
				$10{\sim}15$: the same as configured 0	
				To select mode for Reactive power B.	
10	OB MODE	R/\//	0	0. total wave, reactive nower	
19			0		
				1: fundamental wave, reactive power	
				To select mode for Reactive power A.	
18	QA_MODE	R/W	0	0: total wave, reactive power	
				1: fundamental wave, reactive power	

Т

0x02, R/W, Metering Control Register 0, DSP_CTRL0					
Bit		R/W	Default Value	Description	
17	PQ_HPFSEL	R/W	0	Calculate the total power whether pass high-pass filter. 0: pass 1: not pass	
16	FUND_HPFSEL	R/W	0	Calculate the fundamental data whether pass high- pass filter: 0: pass 1: not pass	
15	RMSU_HPFSEL	R/W	0	Calculate the total voltage RMS data whether pass high-pass filter: 0: pass 1: not pass	
14	RMSIA_HPFSEL	R/W	0	Calculate the total current IA RMS data whether pass high-pass filter: 0: pass 1: not pass	
13	RMSIB_HPFSEL	R/W	0	Calculate current IB RMS data whether pass high- pass filter: 0: pass 1: not pass	
12	RESPONSE_TIME	R/W	0	Metering data response time. 0: normal 1: 2 times	

0x02, F	0x02, R/W, Metering Control Register 0, DSP_CTRL0					
Bit	-	R/W	Default Value	Description		
11:10	AVGRMS_RATE	R/W	0	Average RMS refresh time. 00: 40 ms 01: 80 ms 10: 320 ms 11: 640 ms		
9:8	AVGPQ_RATE	R/W	0	Average power refresh time. 00: 40 ms 01: 80 ms 10: 320 ms 11: 640 ms		
7:4	DSP_MODE	R/W	0	 DSP Operating Mode. 0: 128 sampling points per cycle by DSP at 6.5536 MHz system clock 1: 64 sampling points per cycle by DSP at 6.5536 MHz system clock 2: 32 sampling points per cycle by DSP at 6.5536 MHz system clock. 3, 4, and 5: Reserved. 6: 64 sampling points per cycle by DSP at 3.2768 MHz system clock 7: 32 sampling points per cycle by DSP at 3.2768 MHz system clock 8: 32 sampling points per cycle by DSP at 819.2 KHz system clock (supported only up to 2 channels instantaneous current RMS calculation.) 9: 16 sampling points per cycle by DSP at 409.6 		

0x02, R/W, Metering Control Register 0, DSP_CTRL0				
Bit		R/W	Default Value	Description
				KHz system clock (supported only up to 2 channels
				instantaneous current RMS calculation.)
				Others: the same as mode 0
3	-	-	0	Reserved
2	ADCUEN	R/W	0	To enable the voltage channel (including ADC and DSP).
1	ADCIBEN	R/W	0	To enable the current channel B (including ADC and DSP).
0	ADCIAEN	R/W	0	To enable the current channel A (including ADC and DSP).

2.4.2. DSP_CTRL1 Register

Table 2-19 Metering Control Register 2	(0x03,	DSP_	CTRL1)
--	--------	------	--------

0x03, R/W, Metering Control Register 2, DSP_CTRL1				
Bit		R/W	Default Value	Description
31	BW_COMP	R/W	0	Automatic gain compensation for filter. By default, this function was enabled. This bit does not influence DC metering. It will automatic turn off during the DC metering. 0: enable 1: disable
30:22	Reserved		0	The bit must hold its default value for proper operation.
23	EGY_CLK_SEL	R/W	0	To select the energy accumulator CLK. It needs the stable time around 107 μ s when CLK switch over. Please disable CF before it is stable.

0x03, R/W, Metering Control Register 2, DSP_CTRL1				
Bit		R/W	Default Value	Description
				0: 204.8 KHz
				1: 32.768 KHz
				0: disable
				To write "0" into the bit31 of the DSP_CTRL0 the
				accumulating cycle of energy accumulator 3, 4, 5, 6,
				7, and 8 is 20ms.
				To write "1" into the bit31 of the DSP_CTRL0, the
				accumulating cycle of energy accumulator 3, 4, 5, 6,
				7, and 8 is 40 ms.
				1: enable
22	LCF_ACC	R/W	0	To write "0" into the bit31 of the DSP_CTRL0, the
				accumulating cycle of energy accumulator 3, 4, and 5
				is 10 ms. Energy accumulator 6, 7, and 8 not
				accumulate.
				To write "1" into the bit31 of the DSP_CTRL0, the
				accumulating cycle of energy accumulator 3, 4, and 5
				is 20 ms. Energy accumulator 6, 7, and 8 not
				accumulate.
				Voltage channel digital PGA:
21	PGA_U	R/W	0	0: X1
				1: X4
				To select the input source for current zero-crossing.
20	PHSI_SEL	R/W	0	0: current channel IA
				1: current channel IB
				To select the detect method of zero-crossing:
				0: negative direction (it indicates the signal changing
19:18	SIGN_SEL	R/W	0	from positive to negative is occurring a zero-crossing
				event)
				1: positive direction (it indicates the signal changing

T

0x03, R/W, Metering Control Register 2, DSP_CTRL1				
Bit		R/W	Default Value	Description
				from negative to positive is occurring a zero-crossing
				event)
				2: positive and negative direction
				3: disable the zero-crossing detection function
				Actively power accumulating data uploads, the upload
				interface can pass SYS_IOCFGX P0/ P1/ P2/ P3/ P4/
				P5/ P6 pin configuration as the actively data uploads.
				Can use communicating methods to configure UART
				baud rate.
17	AUTO_BAUD	R/W	0	0: When UART communicates, baud rate is the same
				as last time serial communication. The baud rate when
				SPI communication is 4800.
				1: When UART communicates, baud rate is as much
				again of last time serial communication. The baud rate
				when SPI communication is 9600.
				To enable the active power accumulating data uploads.
16	AUTO_TX_EN	R/W	0	0: disable
				1: enable
				To enable the low-speed energy accumulator and CF
				counter. The accumulating speed of low-speed energy
15	EGY_LC_EN	R/W	0	accumulator is 50 Hz.
				0: disable
				1: enable.
				To control the CF2 polarity.
14	CF2_INV	R/W	0	0: original polarity
				1: reverse polarity
				To Enable the CF2 output.
13	CF2_EN	R/W	0	0: disable
				1: enable.

Т

0x03, R/W, Metering Control Register 2, DSP_CTRL1

,			3 , <u>=</u>	
Bit		R/W	Default Value	Description
				To select the input source of CF2.
12	CF2_SEL	R/W	0	0: from the energy accumulator 1
				1: from the energy accumulator 2
				The bit must hold its default value for proper
11	Reserved		0	operation.
				To control CF1 polarity.
10	CF1_INV	R/W	0	0: original polarity
				1: reverse polarity
				To enable CF1 output.
9	CF1_EN	R/W	0	0: disable CF1 output
				1: enable CF1 output
				To select the input source of CF1.
8	CF1_SEL	R/W	0	0: from the energy accumulator 1
				1: from the energy accumulator 2
				To enable the energy accumulator 2 and CF2 counter.
				The accumulating speed of energy accumulator 2 is
7	CALCEN2	R/W	0	204.8 KHz.
				0: disable
				1: enable.
				To enable the energy accumulator 1 and CF1 counter.
				The accumulating speed of energy accumulator 1 is
6	CALCEN1	R/W	0	204.8 KHz.
				0: disable
				1: enable
				To select the CF pulse width
				0: 80 ms
5:4	CF_PULSE	R/W	0	1: 40 ms
				2: 20 ms
				3: 10 ms

0x03, R/W, Metering Control Register 2, DSP_CTRL1

Bit		R/W	Default Value	Description
				CF pulse speed up output.
				0: Normal mode
3:2	CF_FAST_EN	R/W	0	1: 4x faster
				2: 8x faster
				3: 16x faster
		R/W	0	To determine the power of power-creep. The power-
				creep determination uses continuous 3 average and
				threshold compare. If lower the threshold, then here
1	PWR_CRP_EN			will be the power-creep status.
				0: disable the power-creep detection
				1: enable the power-creep detection
0		R/W	0	To enable the High-speed energy accumulator.
	CRP_EN			0: disable the power-creep detection
				1: enable the power-creep detection

2.4.3. DSP_CTRL2 Register

Table 2-20 Metering Control Register 2 (0x04, DSP_CTRL2)

0x04, R/W, Metering Control Register 2, DSP_CTRL2					
Bit		R/W	Default Value	Description	
31:30	INMODE4	R/W	0	The energy accumulator 4 accumulating mode. 0: power accumulation 1: current RMS accumulation 2: constant accumulation 3: configurable fundamental-wave channel accumulation	
29	A_SEL4	R/W	0	To enable the energy accumulator 4, channel A	

0x04, R/W, Metering Control Register 2, DSP_CTRL2				
Bit		R/W Default Value		Description
				accumulating.
				0: disable
				1: enable
				To enable the energy accumulator 4, channel B
				accumulating.
28	B_SEL4	R/W	0	0: disable
				1: enable
				The energy accumulator 4, multiple channel
				accumulating mode choice.
			0	When power accumulating,
	TYPE_SEL4	R/W		0, 3: active power accumulation
27:26				1: reactive power accumulation
				2: apparent power accumulation
				When RMS accumulating, high bit zero represents
				accumulating sum;
				High bit one represents accumulating difference.
				For each signal type choices which feed into the energy
				accumulator 4.
				0: the positive value of the energy accumulator adding
				1: the negative value of the energy accumulator adding
25:24	PROCMODE4	R/W	0	(Here the actual accumulating value is the positive
				which exchanged from the original value.)
				2: the original value of the energy accumulator adding
				3: the absolute value of the energy accumulator adding
				The energy accumulator 3 accumulation mode
				0: power accumulation
23:22	INMODE3	R/W	0	1: current RMS accumulation
				2: constant accumulation
				3: configurable the fundamental wave channel

0x04, R/W, Metering Control Register 2, DSP_CTRL2				
Bit		R/W	Default Value	Description
				accumulation
				To enable the energy accumulator 3, channel A
			accumulating.	
21	A_SEL3	R/W	0	0: disable;
				1: enable
				To enable the energy accumulator 3, channel B
				accumulating.
20	B_SEL3	R/W	0	0: disable
				1: enable
				The energy accumulator 3, multiple channel
		R/W	0	accumulating mode choice.
				When power accumulating,
				0, 3: active power accumulation
19:18	TYPE_SEL3			1: reactive power accumulation
				2: apparent power accumulation
				When RMS accumulating,
				High bit zero represents accumulating sum; high bit
				one represents accumulating difference.
				For each signal type choices which feed into the energy
				accumulator 3.
				0: the positive value of the energy accumulator adding
				1: the negative value of the energy accumulator adding
17:16	PROCMODE3	R/W	0	(Here the actual accumulating value is the positive
				which exchanged from the original value.)
				2: the original value of the energy accumulator adding
				3: the absolute value of the energy accumulator adding
				The energy accumulator 2 accumulating mode.
15:14	INMODE2	R/W	0	0: power accumulation
				1: current RMS accumulation

0x04, R/W, Metering Control Register 2, DSP_CTRL2				
Bit		R/W	Default Value	Description
				2: constant accumulation
				3: configurable the fundamental wave channel
				accumulation
				To enable the energy accumulator 2, channel A
				accumulating.
13	A_SEL2	R/W	0	0: disable
				1: enable
				To enable the energy accumulator 2, channel B
				accumulating.
12	B_SEL2	R/W	0	0: disable
				1: enable
				The energy accumulator 2, multiple channel
				accumulating mode choice.
				When power accumulating,
				0, 3: active power accumulation
11:10	TYPE_SEL2	R/W		1: reactive power accumulation
				2: apparent power accumulation
				When RMS accumulating,
				High bit zero represents accumulating sum; high bit
				one represents accumulating difference.
				For each signal type choices which feed into the energy
				accumulator 2.
				0: the positive value of the energy accumulator adding
	DDOCMODED	DUN		1: the negative value of the energy accumulator adding
9:8	PROCMODE2	R/W	0	(Here the actual accumulating value is the positive
				which exchanged from the original value.)
				2: the original value of the energy accumulator adding
				3: the absolute value of the energy accumulator adding
7:6	INMODE1	R/W	0	The energy accumulator 1 accumulating mode.

0x04, F	0x04, R/W, Metering Control Register 2, DSP_CTRL2					
Bit		R/W	Default Value	Description		
				0: power accumulation		
				1: current RMS accumulation		
				2: constant accumulation		
				3: configurable the fundamental wave channel		
				accumulation		
				To enable the energy accumulator 1, channel A		
_		5 /14/		accumulating.		
5	A_SEL1	R/W	0	0: disable		
				1: enable		
				To enable the energy accumulator 1, channel B		
				accumulating.		
4	B_SEL1 R/W	0	0: disable			
				1: enable		
			0	Multiple channel accumulating mode choice.		
				When power accumulating,		
		R/W		0, 3: active power accumulation		
				1: reactive power accumulation		
3:2	TYPE_SELI			2: apparent power accumulation		
				When RMS accumulating,		
				High bit zero represents accumulating sum; high bit one		
				represents accumulating difference.		
				For each signal type choices which feed into the energy		
				accumulator 1.		
				0: the positive value of the energy accumulator adding		
1:0 PROCMOI	DROCHORE			1: the negative value of the energy accumulator adding		
		K/W	U	(Here the actual accumulating value is the positive		
				which exchanged from the original value.)		
				2: the original value of the energy accumulator adding		
				3: the absolute value of the energy accumulator adding		

T

2.4.4. DSP_CTRL3 Register

Table 2-21 Metering Control Register 3 (0x05, DSP_CTRL3)

0x05, R/W, Metering Control Register 3, DSP_CTRL3				
Bit		R/W	Default Value	Description
31:30	INMODE8	R/W	0	The energy accumulator 8 accumulating mode.
				0: power accumulation
				1: current RMS accumulation
				2: constant accumulation
				3: configurable the fundamental wave channel
				accumulation
29	A_SEL8	R/W	0	To enable the energy accumulator 8, channel A
				accumulating.
				0: disable
				1: enable
28	B_SEL8	R/W	0	To enable the energy accumulator 8, channel B
				accumulating.
				0: disable
				1: enable
27:26	TYPE_SEL8	R/W	0	The energy accumulator 8, multiple channel
				accumulating mode choice.
				When power accumulating,
				0, 3: active power accumulation
				1: reactive power accumulation
				2: apparent power accumulation
				When RMS accumulating,
				High bit zero represents accumulating sum; high bit one
				represents accumulating difference.
25:24	PROCMODE8	R/W	0	For each signal type choices which feed into the energy
				accumulator 8.
				0: the positive value of the energy accumulator adding

0x05, R/W, Metering Control Register 3, DSP_CTRL3				
Bit		R/W	Default Value	Description
				1: the negative value of the energy accumulator adding
				(Here the actual accumulating value is the positive
				which exchanged from the original value.)
				2: the original value of the energy accumulator adding
				3: the absolute value of the energy accumulator adding
				The energy accumulator 7 accumulating mode
				0: power accumulation
22.22			0	1: current RMS accumulation
23.22	INMODE/	K/ W	0	2: constant accumulation
				3: configurable the fundamental wave channel
				accumulation
			0	To enable the energy accumulator 7, channel A
21	A_SEL7	D /\\/		accumulating
21		K/ W		0: disable
				1: enable
				To enable the energy accumulator 7, channel B
20	R CEL7	R/W	0	accumulating
20	B_SEL7			0: disable
				1: enable
				The energy accumulator 7, multiple channel
				accumulating mode choice.
				When power accumulating,
				0, 3: active power accumulation
19:18	TYPE_SEL7	R/W	0	1: reactive power accumulation
				2: apparent power accumulation
				When RMS accumulating,
				High bit zero represents accumulating sum; high bit
				one represents accumulating difference.
17:16	PROCMODE7	R/W	0	For each signal type choices which feed into the energy

0x05, R/W, Metering Control Register 3, DSP_CTRL3					
Bit		R/W	Default Value	Description	
				accumulator 7.	
				0: the positive value of the energy accumulator adding	
				1: the negative value of the energy accumulator adding	
				(Here the actual accumulating value is the positive	
				which exchanged from the original value.)	
				2: the original value of the energy accumulator adding	
				3: the absolute value of the energy accumulator adding	
				The energy accumulator 6 accumulating mode.	
				0: power accumulation	
15.11		D /\\/	0	1: current RMS accumulation	
15:14 1	INMODEO	R/W	0	2: constant accumulation	
				3: configurable the fundamental wave channel	
				accumulation	
		R/W	0	To enable the energy accumulator 6, channel A	
12	A_SEL6			accumulating.	
13				0: disable	
				1: enable	
				To enable the energy accumulator 6, channel B	
10	R SEL6	R/W	0	accumulating.	
12	D_SELO			0: disable	
				1: enable	
				The energy accumulator 6, multiple channel	
				accumulating mode choice.	
				When power accumulating,	
11:10				0, 3: active power accumulation	
	ITFE_SELO	r./ VV		1: reactive power accumulation	
				2: apparent power accumulation	
				When RMS accumulating,	
				High bit zero represents accumulating sum; high bit one	

0x05, R/W, Metering Control Register 3, DSP_CTRL3						
Bit		R/W	Default Value	Description		
				represents accumulating difference.		
				For each signal type choices which feed into the energy		
				accumulator 6.		
				0: the positive value of the energy accumulator adding		
0.0	DROCMODES	D /\\/	0	1: the negative value of the energy accumulator adding		
9.0	PROCIMODEO	r./ vv	0	(Here the actual accumulating value is the positive		
				which exchanged from the original value.)		
				2: the original value of the energy accumulator adding		
				3: the absolute value of the energy accumulator adding		
				The energy accumulator 5 accumulating mode.		
			0	0: power accumulation		
7.6	INMODE5			1: current RMS accumulation		
7.0		K/ W		2: constant accumulation		
				3: configurable the fundamental wave channel		
				accumulation		
		R/W	0	To enable the energy accumulator 5, channel A		
5				accumulating.		
5	A_SELS			0: disable		
				1: enable		
				To enable the energy accumulator 5, channel B		
1	B SELS	P /\W/	0	accumulating.		
4	D_SELS		0	0: disable		
				1: enable		
				The energy accumulator 5, multiple channel		
				accumulating mode choice.		
2.2	TVDE SELS	D /\\/	0	When power accumulating,		
5.2				0, 3: active power accumulation		
				1: reactive power accumulation		
				2: apparent power accumulation		

0x05, R/W, Metering Control Register 3, DSP_CTRL3					
Bit		R/W	Default Value	Description	
				When RMS accumulating,	
				High bit zero represents accumulating sum; high bit	
				one represents accumulating difference.	
	PROCMODE5	R/W	0	For each signal type choices which feed into the energy	
				accumulator 5.	
				0: the positive value of the energy accumulator adding	
1.0				1: the negative value of the energy accumulator adding	
1:0				(Here the actual accumulating value is the positive	
				which exchanged from the original value.)	
				2: the original value of the energy accumulator adding	
				3: the absolute value of the energy accumulator adding	

2.4.5. DSP_CTRL4 Register

Table 2-22 Metering Control Register 4 (0x06, DSP_CTRL4)

0x06, F	0x06, R/W, Metering Control Register 4, DSP_CTRL4					
Bit		R/W	Default Value	Description		
31:30	IPERIOD	R/W	0	To select the detection time of over-current or under- current. When the number of sampling points of over- current or under-current in the sampling points during the half-cycle is greater than or equal to the ITH value, it will be considered as the effective half-cycle. If the number of consecutive effective half-cycle reaches the value set by IPERIOD, it will be considered as this event happened. 0: half cycle 1: 1 cycle 2: 2 cycles		
				3: 4 cycles		

0x06, R/W, Metering Control Register 4, DSP_CTRL4					
Bit		R/W	Default Value	Description	
29:24	ITH	R/W	0	To determine the threshold of half-cycle is effective half-	
				cycle.	
				0: 1 time	
				1: 2 times	
				63: 64 times	
23:22	UPERIOD	R/W	0	The same as IPERIOD configurable conditions.	
				0: half cycle	
				1: 1 cycle	
				2: 2 cycles	
				3: 4 cycles	
21:16	UTH	R/W	0	The same as ITH configurable conditions.	
				0: 1 time	
				1: 2 times	
				63: 64 times	
15:10	Reserved			These bits must hold its default value for proper operation.	
9	IBLCSEL	R/W	0	IB under- current test source.	
				0: no pass IB wave data of high pass filter	
				1: pass IB wave data of high pass filter	
8	IBOCSEL	R/W	0	IB: over-current test source.	
				0: no pass IB wave data of high pass filter	
				1: pass IB wave data of high pass filter	
7	IALCSEL	R/W	0	IA under-current test source.	
				0: no pass IA wave data of high pass filter	
				1: pass IA wave data of high pass filter	

0x06, R/W, Metering Control Register 4, DSP_CTRL4					
Bit R/W Default Value		Default Value	Description		
6	IAOCSEL	R/W	0	IA over-current test source.	
				0: no pass IA wave data of high pass filter	
				1: pass IA wave data of high pass filter	
5	ULVSEL	R/W	0	Channel U under-voltage test source.	
				0: no pass channel U wave data of high pass filter	
				1: pass channel U wave data of high pass filter	
4	UOVSEL	R/W	0	Channel U over-voltage test source.	
				0: no pass channel U wave data of high pass filter	
				1: pass channel U wave data of high pass filter	
3	Reserved		0	The bit must hold its default value for proper operation.	
2	FDIBEN	R/W	0	To enable the fast detection for IB.	
				0: disable IB over or under current test	
				1: enable IB over or under current test	
1	FDIAEN	R/W	0	To enable the fast detection for IA.	
				0: disable IA over or under current test	
				1: enable IA over or under current test	
0	FDUEN	R/W	0	To enable the fast detection.	
				0: disable channel U over or under voltage test	
				1: enable channel U over or under voltage test	

2.4.6. DSP_CTRL5 Register

Table 2-23 Metering Control Register 5 (0x07, DSP_CTRL5)

0x07, R/W, Metering Control Register 5, DSP_CTRL5					
Bit		R/W	Default Value	Description	
31	WAVE_ADDR_CLR	R/W	0	Reset reading the address of waveform storage, write 1 to reset.	
30:29	WAVE_MEM_MODE	R/W	0	 The operating mode of waveform storage: 0: storage by manual, full then stop. This time is the single storage. 1: storage by manual, trigger or manual stop. This time is the cyclic storage. 2: storage by trigger, full then stop. This time is the single storage. 3: disable 	
28	WAVE_MEM_EN	R/W	0	Waveform storage to trigger manual switch: write 1 = enable, write 0 = disable 0: disable 1: enable	
27	U_DIP_TRIG	R/W	0	Event trigger for the voltage dip. 0: disable 1: enable	
26	U_SWELL_TRIG	R/W	0	Event trigger for the voltage swell. 0: disable 1: enable	
25	IB_LC_TRIG	R/W	0	Event trigger for the IB under-current. 0: disable 1: enable	
24	IB_OC_TRIG	R/W	0	Event trigger for the IB over-current. 0: disable 1: enable	
23	IA_LC_TRIG	R/W	0	Event trigger for the IA under-current. 0: disable 1: enable	

0x07, R/W, Metering Control Register 5, DSP_CTRL5						
Bit		R/W	Default Value	Description		
22		R/\//	0	Event trigger for the IA over-current.		
~~			0	0: disable		
				1: enable		
21	U IV TRIG	R/W	0	Event trigger for Under-voltage.		
21	0_110		0	0: disable		
				1: enable		
20	U OV TRIG	R/W	0	Event trigger for Over-voltage.		
20 0_0V_1RIG			0	0: disable		
				1: enable		
19:16			0	To select output waveform length of DMA		
		.,		channel.		
				0: 1 cycle		
				1: 2 cycles		
				2: 3 cycles		
				15: 16 cycles		
15	Reserved			The bit must hold its default value for proper		
				operation.		
14	WAVE U HPF SEL	R/W	0	Voltage waveform whether pass high-pass filter		
				choice:		
				0: no pass high-pass filter		
				1: pass high-pass filter		
13	WAVE IA HPF SEL	R/W	0	Current IA waveform whether pass high-pass		
		,		filter choice:		
				0: no pass high-pass filter		
				1: pass high-pass filter		

0x07, F	0x07, R/W, Metering Control Register 5, DSP_CTRL5						
Bit		R/W	Default Value	Description			
12	WAVE_IB_HPF_SEL	R/W	0	Current IB waveform whether pass high-pass filter choice:			
				0: no pass high-pass filter			
				1: pass high-pass filter			
11	Reserved	-	-	The bit must hold its default value for proper operation.			
10	WAVE_U_SEL	R/W	0	To enable the waveform storage and DMA of channel U. The bit decides whether storage or transmit data of channel U:			
				0: no			
				1: yes			
9	WAVE_IA_SEL	R/W	0	To Enable the waveform storage and DMA of channel IA. The bit decides whether storage or			
				transmit data of channel IA:			
				0: no			
				1: yes			
8	WAVE_IB_SEL	R/W	0	To enable the waveform storage and DMA of channel IB. The bit decides whether storage or			
				and configure bit 0, bit 0, and bit 10 anable at			
				and configure bit 8, bit 9, and bit 10 enable at			
				the same time, the bit becomes invalid):			
7	SP_CHECK	R/W	0	DMA mode parity check choice:			
6	SPI_POL	R/W	0	DMA mode polarity choice:			
				U: negative			
				1: positive			

0x07, R/W, Metering Control Register 5, DSP_CTRL5						
Bit		R/W	Default Value	Description		
5	SPI PHA	R/W	0	DMA mode phase choice:		
				0: negative		
				1: positive		
4:3	DMA MANUALCTRI	R/W	0	DMA channel choice:		
				0: disable		
				1: enable by manual		
				2: stop by manual		
				3: reserved		
2:0	DMA MODE	R/W	0	DMA channel operating mode:		
				0: transmit starting by manual, until maximum		
				cycle then stops.		
				1: transmit starting by manual, trigger or by		
				manual stop.		
				2: trigger starting, stop by manual.		
				3: trigger starting, until maximum cycle then		
				stops.		
				4~7: transmit by manual, stop by manual.		
				Before enabling DMA transmission, at least one		
				channel of waveform storage and upload must		
				be opened.		

2.5. Metering Data Register

When power-on reset (POR), RSTN pin reset, RX reset, or global software reset occurs, all metering control registers will be reset to the default value.

2.5.1. DC Component Register

Table 2-24 DC Component Register

Address	Register	R/W	Data Format	Description	
0x22	DSP_DAT_DCU	R	32-bit Complement Code	DC value of voltage channel.	By default, the
0x23	DSP_DAT_DCI	R	32-bit Complement Code	DC value of current channel A.	updating time is 40 ms; stable time is
0x24	DSP_DAT_DCIB	R	32-bit Complement Code	DC value of Current channel B.	120 ms.

2.5.2. RMS Register

Address	Register	R/W	Data Format	Description	
0x0E	DSP_DAT_RMS0U	R	32-bit Complement Code	Instantaneous RMS of voltage.	By default, the
0x0F	DSP_DAT_RMS0IA	R	32-bit Complement Code	Instantaneous RMS of current A.	updating time is 10 ms; stable time is
0x10	DSP_DAT_RMS0IB	R	32-bit Complement Code	Instantaneous RMS of current B.	30 ms.
0x19	DSP_DAT_RMS1U	R	32-bit Complement Code	Average RMS of voltage.	Under the default
0x1A	DSP_DAT_RMS1IA	R	32-bit Complement Code	Average RMS of Current A.	state, the updating time is 40 ms; stable time is 120
0x1B	DSP_DAT_RMS1IB	R	32-bit Complement Code	Average RMS of Current B.	ms.

Table 2-25 Voltage/ Current/ Measurement Signal (M) RMS Register

Address	Register	R/W	Data Format	Description
0x1E	DSP_DAT_RMSU_AVG	R	32-bit Complement Code	Average RMS of Voltage for 10 or 12 cycles (chose by line frequency.)
0x1F	DSP_DAT_RMSIA_AVG	R	32-bit Complement Code	Average RMS of Current IA for 10 or 12 cycles (chose by line frequency.)
0x20	DSP_DAT_RMSIB_AVG	R	32-bit Complement Code	Average RMS of Current IB for 10 or 12 cycles (chose by line frequency.)

2.5.3. Active/ Reactive Power Register

Table	2-26	Active/	Reactive	Power	Register
Tubic	2 20	/ (CCIVC/	Redective	10000	Register

Address	Register	R/W	Data Format	Description	
0×08	DSP_DAT_PA	R	32-bit Complement Code	Instantaneous Active Power of channel A.	
0x09	DSP_DAT_QA	R	32-bit Complement Code	Instantaneous Reactive Power of channel A.	By default, the updating time is
0×0A	DSP_DAT_SA	R	32-bit Complement Code	Instantaneous Apparent Power of channel A.	20 ms; stable time is 60 ms.
0×0B	DSP_DAT_PB	R	32-bit Complement Code	Instantaneous Active Power of channel B.	

Address	Register	R/W	Data Format	Description	
0x0C	DSP_DAT_QB	R	32-bit Complement Code	Instantaneous Reactive Power of channel B.	
0x0D	DSP_DAT_SB	R	32-bit Complement Code	Instantaneous Apparent Power of channel B.	
0x13	DSP_DAT_PA1	R	32-bit Complement Code	Average Active power of Channel A.	
0x14	DSP_DAT_QA1	R	32-bit Complement Code	Average Reactive power of Channel A.	
0x15	DSP_DAT_SA1	R	32-bit Complement Code	Average Apparent Power of Channel A.	By default, the updating time is
0x16	DSP_DAT_PB1	R	32-bit Complement Code	Average Active power of Channel B.	80 ms; stable time is 240 ms.
0x17	DSP_DAT_QB1	R	32-bit Complement Code	Average Reactive power of Channel B.	
0x18	DSP_DAT_SB1	R	32-bit Complement Code	Average Apparent Power of Channel B.	

2.5.4. Fundamental Wave Channel Register

Table 2-27 Fundamental Wave Channel Instantaneous Register

Address	Register	R/W	Data Format	Description
0×11	DSP DAT CH1	D	32-bit	Instantaneous value of Fundamental wave
	ĸ	Complement Code	of Channel 1.	
0x12			32-bit	Instantaneous value of Fundamental wave
UXIZ DSF_DAI_CHZ		Complement Code	of Channel 2.	

Table 2-28 Fundamental Wave Channel Average Register

Address	Register	R/W	Data Format	Description
0x1C	DSP_DAT_CH1_AVG	R	32-bit Complement Code	Average value of Fundamental wave of Channel 1.
0x1D	DSP_DAT_CH2_AVG	R	32-bit Complement Code	Average value of Fundamental wave of Channel 2.

2.5.5. Line Frequency Register

Table 2-29 Life Frequency Register (0x21, DSP_DAT_FRQ	Table 2-29	Line Freq	uency Reg	jister (0x21	, DSP_	_DAT_	_FRQ)
---	------------	-----------	-----------	--------------	--------	-------	-------

Address	Register	R/W	Data Format	Description
0x21	DSP_DAT_FRQ	R	32-bit Complement Code	Line frequency is related to FRQ_SEL. By default, the updating time is 320 ms; stable time is 640 ms.

2.6. Energy Accumulator Register

Table	2-30	Fnerav	Accumul	ator	Register
Tubic	2 50	LICIGY	Accumu	ator	Register

Address	Register	R/W	Data Format	Description
0x39	EGY_PROCTH	R	32-bit Unsigned	Anti-creep threshold for energy accumulator. When the accumulated value of the anti-creep energy accumulator over this threshold and the accumulated value of the high-speed energy accumulator under this threshold, the accumulated value of the high-speed energy accumulator will be cleared.

Address	Register	R/W	Data Format	Description
0x3A	EGY_PWRTH	R/W	32-bit Unsigned	Accumulation threshold for energy
				accumulator. Due to the energy accumulator
				was 46bit, the accumulated value of the high-
				speed energy accumulator equals to this
				value*16384; the accumulated value of the
				low-speed energy accumulator equals to this
				value*4.
0x3B	EGY_CONST1	R/W	32-bit Unsigned	Energy accumulator 1 accumulating constant.
0x3C	EGY_OUT1L	R/W	32-bit Unsigned	Energy accumulator 1 accumulating low bit.
0x3D	EGY_OUT1H	R/W	32-bit Unsigned	Energy accumulator 1 accumulating high bit
				Low 14bit effective.
0x3E	EGY_CFCNT1	R/W	32-bit Unsigned	Energy accumulator 1 pulse counter.
0x3F	EGY_CONST2	R	32-bit Unsigned	Energy accumulator 2 accumulating constant.
0x40	EGY_OUT2L	R/W	32-bit Unsigned	Energy accumulator 2 accumulating low bit.
0x41	EGY_OUT2H	R/W	32-bit Unsigned	Energy accumulator 2 accumulating high bit
				Low 14bit effective.
0x42	EGY_CFCNT2	R/W	32-bit Unsigned	Energy accumulator 2 pulse counter.
0x43	EGY_CONST3	R	32-bit Unsigned	Energy accumulator 3 accumulating constant.
0x44	EGY_OUT3	R/W	32-bit Unsigned	Energy accumulator 3 accumulating value.
0x45	EGY_CFCNT3	R/W	32-bit Unsigned	Energy accumulator 3 pulse counter.
0x46	EGY_CONST4	R	32-bit Unsigned	Energy accumulator 4 accumulating constant.
0x47	EGY_OUT4	R/W	32-bit Unsigned	Energy accumulator 4 accumulating value.
0x48	EGY_CFCNT4	R/W	32-bit Unsigned	Energy accumulator 4 pulse counter.
0x49	EGY_CONST5	R	32-bit Unsigned	Energy accumulator 5 accumulating constant.
0x4A	EGY_OUT5	R/W	32-bit Unsigned	Energy accumulator 5 accumulating value.
0x4B	EGY_CFCNT5	R/W	32-bit Unsigned	Energy accumulator 5 pulse counter.
0x4C	EGY_CONST6	R	32-bit Unsigned	Energy accumulator 6 accumulating constant.
0x4D	EGY_OUT6	R/W	32-bit Unsigned	Energy accumulator 6 accumulating value.
0x4E	EGY_CFCNT6	R/W	32-bit Unsigned	Energy accumulator 6 pulse counter.
0x4F	EGY_CONST7	R	32-bit Unsigned	Energy accumulator 7 accumulating constant.

Address	Register	R/W	Data Format	Description	
0x50	EGY_OUT7	R/W	32-bit Unsigned	Energy accumulator 7 accumulating value.	
0x51	EGY_CFCNT7	R/W	32-bit Unsigned	Energy accumulator 7 pulse counter.	
0x52	EGY_CONST8	R	32-bit Unsigned	Energy accumulator 8 accumulating constant.	
0x53	EGY_OUT8	R/W	32-bit Unsigned	Energy accumulator 8 accumulating value.	
0x54	EGY_CFCNT8	R/W	32-bit Unsigned	Energy accumulator 8 pulse counter.	

2.7. Phase Measurement Register

Table 2-31 Phase Measurement Register

Address	Register	R/W	Data Format	Description
0x61	DSP_PHS_STT	R/W	32-bit Unsigned	To control the phase measurement. Enable phase measurement once for writing operation.
0x62	DSP_PHS_U	R	32-bit Unsigned	Voltage Phase Value.
0x63	DSP_PHS_UN	R	32-bit Unsigned	The waveform data before voltage zero- crossing.
0x64	DSP_PHS_UP	R	32-bit Unsigned	The waveform data after voltage zero- crossing.
0x65	DSP_PHS_I	R	32-bit Unsigned	Current Phase Value.
0x66	DSP_PHS_IN	R	32-bit Unsigned	The waveform data before current zero- crossing.
0x67	DSP_PHS_IP	R	32-bit Unsigned	The waveform data after current zero- crossing.

2.8. Power-creep Threshold Register

Table 2-32 Power-creep Threshold Register

Address	Register	R/W	Data Format	Description
0x55	DSP_OV_THL	R/W	32-bit Complement Code	To set the lower threshold for the power creep detection for instantaneous active power/ reactive power/ apparent power of channel A and B.
0x56	DSP_OV_THH	R/W	32-bit Complement Code	To set the upper threshold for the power creep detection for instantaneous active power/ reactive power/ apparent power of channel A and B.

2.9. Voltage Swell or Dip Threshold Register

Address	Register	R/W	Data Format	Description
0x57	DSP_SWELL_THL	R/W	32-bit Complement Code	To set the lower threshold for the voltage swell.
0x58	DSP_SWELL_THH	R/W	32-bit Complement Code	To set the upper threshold for the voltage swell.
0x59	DSP_DIP_THL	R/W	32-bit Complement Code	To set the lower threshold for the voltage dip.
0x5A	DSP_DIP_THH	R/W	32-bit Complement Code	To set the upper threshold for the voltage dip.
0x6A	DAT_SWELL_CNT	R/C	32-bit Complement Code	Times records of voltage swell, half wave as a unit. 24bit effective. When write in any value, can clear zero the counter value.
0x6B	DAT_DIP_CNT	R/C	32-bit Complement Code	Times records of voltage dip, half wave as a unit. 24bit effective. When write in any value, can clear zero the counter value.

Table 2-33 Voltage Swell or Dip Threshold Register

2.10. Fast Detection Threshold Register

Address	Register	R/W	Data Format	Description
0x5B	FD_OVTH	R/W	30-bit Complement Code	To set over-voltage threshold for fast detection. Bit width is 30bit.
0x5C	FD_LVTH	R/W	30-bit Complement Code	To set under-voltage threshold for fast detection. Bit width is 30bit.
0x5D	FD_IA_OCTH	R/W	30-bit Complement Code	To set over-current threshold in channel A for fast detection. Bit width is 30bit.
0x5E	FD_IA_LCTH	R/W	30-bit Complement Code	To set under-current threshold in channel A for fast detection. Bit width is 30bit.
0x5F	FD_IB_OCTH	R/W	30-bit Complement Code	To set over-current threshold in channel B for fast detection. Bit width is 30bit.
0x60	FD_IB_LCTH	R/W	30-bit Complement Code	To set under-current threshold in channel B for fast detection. Bit width is 30bit.

2.11. Waveform Data Register

	Table 2-35	Waveform	Data	Register
--	------------	----------	------	----------

Address	Register	R/W	Data Format	Description
0x69	DAT_WAVE	R	32-bit Complement Code	Waveform reading. It can repeatable reading the address and obtain the overall wave data. If there is no need to read all data, it would be reset the bit 31 of metering control register (0x07, DSP_CTRL5) to read address.

2.12. Calibration Register

When power-on reset (POR), RSTN pin reset, RX reset, or global software reset occurs, all calibration registers will be reset to the default value. The default value in the following tables of this section are in format of hexadecimal.

All the calibration registers need to be configuration verification and self-checking.

2.12.1. DC Bias Setting Register

Address	Register	Default Value	R/W	Format Value	Description		
0x34	DSP_CFG_DCU	0	R/W	32-bit Complement Code	To set the DC compensation for the voltage channel.		
0x35	DSP_CFG_DCIA	0	R/W	32-bit Complement Code	To set the DC compensation for the current channel A.		
0x36	DSP_CFG_DCIB	0	R/W	32-bit Complement Code	To set the DC compensation for the current channel B.		

Table 2-36 DC Bias Setting Register

All registers for calibration need to be configuration verification and self-checking.

2.12.2. RMS Calibration Register

Table 2-37 Voltage/ Current/ Measurement RMS Calibration Register

Address	Register	Default Value	R/W	Data Format	Description
0x2D	DSP_CFG_CALI_RMSU	0	R/W	32-bit Complement Code	To set gain calibration for Voltage RMS.
0x2E	DSP_CFG_RMS_DCU	0	R/W	32-bit Complement Code	To set offset calibration for Voltage RMS.

Address	Register	Default Value	R/W	Data Format	Description
0x2F	DSP_CFG_CALI_RMSIA	0	R/W	32-bit Complement Code	To set gain calibration for Current RMS A.
0x30	DSP_CFG_RMS_DCIA	0	R/W	32-bit Complement Code	To set offset calibration for Current RMS A.
0x31	DSP_CFG_CALI_RMSIB	0	R/W	32-bit Complement Code	To set gain calibration for Current RMS B.
0x32	DSP_CFG_RMS_DCIB	0	R/W	32-bit Complement Code	To set offset calibration for Current RMS.

2.12.3. Power Calibration Register

Table 2-38 Total-wave Active/ Reactive Power Calibration Register

Address	Register	Default Value	R/W	Data Format	Description
0x25	DSP_CFG_CALI_PA	0	R/W	32-bit Complement Code	To set gain calibration for the active power A.
0x26	DSP_CFG_DC_PA	0	R/W	32-bit Complement Code	To set offset calibration for the active power A.
0x27	DSP_CFG_CALI_QA	0	R/W	32-bit Complement Code	To set gain calibration for Reactive power A.
0x28	DSP_CFG_DC_QA	0	R/W	32-bit Complement Code	To set offset calibration for Reactive power A.
0x29	DSP_CFG_CALI_PB	0	R/W	32-bit Complement Code	To set gain calibration for Active power B.
0x2A	DSP_CFG_DC_PB	0	R/W	32-bit Complement Code	To set offset calibration for Active power B.

Address	Register	Default Value	R/W	Data Format	Description
0x2B	DSP_CFG_CALI_QB	0	R/W	32-bit Complement Code	To set gain calibration for Reactive power B.
0x2C	DSP_CFG_DC_QB	0	R/W	32-bit Complement Code	To set offset calibration for Reactive power B.

2.12.4. Threshold Register

Table 2-39 Threshold Register

Address	Register	Default Value	R/W	Data Format	Description
0x39	EGY_PROCTH	0	R/W	32-bit Complement Code	Energy accumulator anti-creep threshold. When anti-creep energy accumulator exceeds the EGY_CRPTH and high-speed energy accumulator not exceeds the EGY_PWRTH, the accumulating value of high-speed accumulator will be cleared. Metering chip has a power-creep energy accumulating register for energy accumulator 1 and 2 respectively, and they have the same accumulation speed. After enabling the power-creep detection in the energy accumulator, the input would be fixed to 1 in this power-creep energy accumulator. User should configure threshold for the power-creep detection register

Address	Register	Default Value	R/W	Data Format	Description
					(EGY_CRPTH) and energy
					accumulating threshold register
					(EGY_PWRTH). If the accumulating
					value of power-creep energy
					accumulator register reaches the
					value of EGY_CRPTH first, the energy
					accumulating register will be cleared,
					and system enter the power-creep
					status. When the accumulating value
					of energy accumulating register
					reaches the value of EGY_PWRTH
					first, the power-creep energy register
					will be cleared, system starts to work
					and operates normally.
					The actual bit width of register
					EGY_CRPTH is 32bit. The register
					contents will be padded with Os
					automatically in the 4 least significant
					bits when the power-creep calculated.
					It would be calculated after extended
					to 36 digits.
					Accumulation threshold for energy
					accumulator. Due to the energy
					accumulator was 46bit, the
				32-bit Complement	accumulated value of the high-speed
0x3A	EGY_PWRTH	0	R/W	Code	energy accumulator equals to this
					value*16384; the accumulated value
					of the low-speed energy accumulator
					equals to this value*4.

Address	Register	Default Value	R/W	Data Format	Description
0x55	DSP_OV_THL	0	R/W	32-bit Complement Code	To set the lower threshold for the power-creep determination.
0x56	DSP_OV_THH	0	R/W	32-bit Complement Code	To set the upper threshold for the power-creep determination.

2.12.5. Phase Calibration Register

Table 2-40 Phase Calibration Register (0x33, DSP_CFG_PHC)

Address	Register	Default Value	R/W	Data Format	Description
0x33	DSP_CFG_PHC	0	R/W	32-bit Complement Code	Phase Error Calibration Register. The register needs to be configuration verification and self-checking. [10:0]= phase error calibration value for channel A; [26:16]= phase error calibration value for channel B; Where the range is from -766 to 767.

2.12.6. Bandpass Filter Register

Address	Register	Default Value	R/W	Data Format	Description
0x37	DSP_CFG_BPF	0	R/W	32-bit Complement Code	Band-pass filter coefficient. Related to setting the DSP_MODE by Bit[7:4] of metering control register 0

Address	Register	Default Value	R/W	Data Format	Description
					(0x02,DSP_CTRL0)
					Setting 0x806764B6 at DSP_MODE=0, 1,
					2;
					Setting 0x80DD7A8C at DSP_MODE=6, 7;
					Setting 0x82B465F0 at DSP_MODE=8.
					The frequency of other modes would be not
					supported to measure, so setting to 0x0.

2.13. Checksum Register

Table 2-42 Checksum Register (0x38, DSP_CFG_CKSUM)

Address	Register	Default Value	R/W	Data Format	Description
0x28	DSP_CFG_CKSUM	0	R/W	32-bit Complement Code	This register needs to participate in parameter configuration self-check. This register participates in parameter configuration self-check along with the addresses 0x0 ~ 0x7, 0x25 ~ 0x3A, 0x55 ~ 0x60. If all the above register values add up to 0xFFFFFFF, the parameter configuration self-check passes. To ensure parameter configuration self- check successful, the register should write correct value (0xFFFFFFF - the sum of the configuration values of other registers participating in the check).

Table 2-43 Self-checking Register

Name	Туре	Address	Description	Default
ANA_CTRL0	R/W	0x00	Analog Control Register 0.	0x00000000
ANA_CTRL1	R/W	0X01	Analog Control Register 1.	0x00000000
DSP_CTRL0	R/W	0x02	Metering Control Register 0.	0x00000000
DSP_CTRL1	R/W	0x03	Metering Control Register 1.	0x00000000
DSP_CTRL2	R/W	0x04	Metering Control Register 2.	0x00000000
DSP_CTRL3	R/W	0x05	Metering Control Register 3.	0x00000000
DSP_CTRL4	R/W	0x06	Metering Control Register 4.	0x00000000
DSP_CTRL5	R/W	0x07	Metering Control Register 5.	0x00000000
DSP_CFG_CALI_PA	R/W	0x25	To set gain calibration for the active power A.	0×00000000
DSP_CFG_DC_PA	R/W	0x26	To set offset calibration for the active power A.	0×00000000
DSP_CFG_CALI_QA	R/W	0x27	To set gain calibration for Reactive power A.	0×00000000
DSP_CFG_DC_QA	R/W	0x28	To set offset calibration for Reactive power A.	0x00000000
DSP_CFG_CALI_PB	R/W	0x29	To set gain calibration for Active power B.	0x00000000
DSP_CFG_DC_PB	R/W	0x2A	To set offset calibration for Active power B.	0x00000000
DSP_CFG_CALI_QB	R/W	0x2B	To set gain calibration for Reactive power B.	0x00000000
DSP_CFG_DC_QB	R/W	0x2C	To set offset calibration for Reactive power B.	0×00000000
DSP_CFG_CALI_RMSU	R/W	0x2D	To set gain calibration for Voltage RMS.	0x00000000
DSP_CFG_RMS_DCU	R/W	0x2E	To set offset calibration for Voltage RMS.	0x00000000
DSP_CFG_CALI_RMSIA	R/W	0x2F	To set gain calibration for Current RMS A.	0x00000000
DSP_CFG_RMS_DCIA	R/W	0x30	To set offset calibration for Current RMS A.	0x00000000
DSP_CFG_CALI_RMSIB	R/W	0x31	To set gain calibration for Current RMS B.	0x00000000
DSP_CFG_RMS_DCIB	R/W	0x32	To set offset calibration for Current RMS.	0x00000000
			Phase Error Calibration Registers.	
DSP_CFG_PHC	R/W	0x33	[10:0]= phase error calibration value for	0×0000000
			channel A	

			[26:16]= phase error calibration value for		
			channel B.		
			Where the range is from -766 to 767.		
	D /ht/	0.04	To set the DC compensation for the voltage		
DSP_CFG_DCU	R/W	0x34	channel.	0x00000000	
	D ////	0.05	To set the DC compensation for the current		
DSP_CFG_DCIA	R/W	0x35	channel A.	0x00000000	
	D ////	0.00	To set the DC compensation for the current		
DSP_CFG_DCIB	R/W	0x36	channel B.	0x00000000	
			Band-pass filter coefficient. Related to		
			setting the DSP_MODE by Bit[7:4] of		
			metering control register 0		
			(0x02,DSP_CTRL0).		
DSP_CFG_BPF	R/W	0x37	Setting 0x806764B6 at DSP_MODE=0,1,2;	0x00000000	
			setting 0x80DD7A8C at DSP_MODE=6,7;		
			setting 0x82B465F0 at DSP_MODE=8.		
			The frequency of other modes would be not		
			supported to measure, so setting to 0x0.		
DSP_CFG_CKSUM	R/W	0x38	Configuration register for checksum.	0x00000000	
			Anti-creep threshold for energy	-	
			accumulator. When the accumulated value	F	
			of the anti-creep energy accumulator over		
	D ////		this threshold and the accumulated value of		
EGY_PROCTH	R/W	0x39	the high-speed energy accumulator under	0x00000000	
			this threshold, the accumulated value of		
			the high-speed energy accumulator will be		
			cleared.		
			Accumulation threshold for energy		
			accumulator. Due to the energy		
EGY_PWRTH	R/W	0x3A	accumulator was 46bit, the accumulated	0×00000000	
			value of the high-speed energy		
			accumulator equals to this value*16384;		

			the accumulated value of the low-speed	
			energy accumulator equals to this value*4.	
DSP_OV_THL	R/W	0x55	To set the lower threshold for the no-load determination.	0x00000000
DSP_OV_THH	R/W	0x56	To set the upper threshold for the no-load determination.	0x00000000
DSP_SWELL_THL	R/W	0x57	To set the lower threshold for the voltage dip.	0x00000000
DSP_SWELL_THH	R/W	0x58	To set the upper threshold for the voltage swell.	0x00000000
DSP_DIP_THL	R/W	0x59	To set the lower threshold for the voltage dip.	0x00000000
DSP_DIP_THH	R/W	0x5A	To set the upper threshold for the voltage swell.	0x00000000
FD_OVTH	R/W	0x5B	To set over-voltage threshold for fast detection. Bit width is 30bit.	0x00000000
FD_LVTH	R/W	0x5C	To set under-voltage threshold for fast detection. Bit width is 30bit.	0x00000000
FD_IA_OCTH	R/W	0x5D	To set over-current threshold in channel A for fast detection. Bit width is 30bit.	0x00000000
FD_IA_LCTH	R/W	0x5E	To set under-current threshold in channel A for fast detection. Bit width is 30bit.	0x00000000
FD_IB_OCTH	R/W	0x5F	To set over-current threshold in channel B for fast detection. Bit width is 30bit.	0×00000000
FD_IB_LCTH	R/W	0x60	To set under-current threshold in channel B for fast detection. Bit width is 30bit.	0×00000000

3. Main Power Supply

Features of V93XX main power system as below:

- 3.3V single main power supply, the voltage input range: 2.6~3.6V
- The power supply of the internal digital circuit comes from the Digital main power circuit (DVCCLDO)
- The power supply of the oscillator circuit comes from 3.3V main power
- Supporting power down detection
- Controllable CF detection of power down alarm

3.1. Power Supply Monitoring Circuit

V93XX integrates an internal power-down detection circuit to supervise the voltage on pin "VDD" all the time. When the voltage on the pin "VDD" is lower than 2.8V (\pm 7%), the power-down interrupt would be generated. The power supply monitoring circuit is always on work.

Figure 3-2 Power-down monitoring

3.2. Digital Power Supply

V93XX integrates an on-chip LDO (DVCCLDO) and supplies voltage for digital circuit. This circuit could output stable voltage with the power supply (VDD) has ripple noise. It is recommended to decouple the pin DVCC externally with a \geq 4.7 µ F capacitor in parallel with a 0.1 µ F capacitor. LDO is always on work.

The DVCCLDO has a driving capability of 35 mA. When the load current on the digital circuits is less than 35 mA, the DVCCLDO outputs stable voltage. When the load current is higher than 35mA, the output voltage reduces as the current increases.

3.3. Power on Reset Circuit

The internal power-on reset circuit supervises the output voltage on **"DVCCLDO"** all the time. When the output voltage is lower than 1.3V, POR reset signal will be generated and force the chip into the reset state. When the output voltage is higher than 1.3V, the reset signal will be released, and the chip will get to the Default State.

POR is always on work.

4. Bandgap circuit

In the V93XX, the Bandgap circuit outputs a reference voltage and bias current, about 1.21V with a typical temperature coefficient of 10 ppm/°C, for ADCs and the 6.5 MHz RC oscillator. By default, the Bandgap circuit was enabled. This circuit consumes about 0.09 mA (typical).

Users can configure RESTL<1:0> (Bit[4:3]) and REST<2:0> (Bit[2:0]) of analog control register (0x01, ANA_CTRL1) to adjust the temperature coefficient of Bandgap circuit to cancel the temperature coefficient introduced by the external components, with the following steps:

- Assume the current settings of relative bits are REST<2:0>='010' and RESTL<1:0>='00', which corresponds to the temperature coefficient of Bandgap is +14 ppm.
- 2) Measure meter errors in high and low temperature conditions. For example, this meter has 0 error at 20°C, and the measuring errors are 0.6% at 80°C and -0.4% at -40°C respectively. Then a -(0.6%-(-0.4%))/2=-0.5% measuring error needs to be compensated relative to high temperature working condition, equivalent to -0.5%/(80-20)=-5000/60=-83 ppm.
- 3) As measured error is minus two times of Reference temperature coefficient error, to compensate a -83 ppm error, an additional +41.5 ppm of Bandgap REF temperature coefficient adjustment is needed. Taking the initial +14 ppm setting into consideration, the actual adjustment should be +55.5 ppm. According to the lookup table of RESTL<1:0> and REST<2:0>, user should set register RESTL<1:0> to `11' and REST<2:0> to `000', whose combination equals to a +56 ppm temperature coefficient adjustment.

Attention: For the adjustment of Reference temperature parameters would influence the basic error; therefore, when customers designed each new product, please first confirm the temperature parameter of Reference then calibrate the error of the meter.

A temperature coefficient drift of x in the Bandgap circuit results in a drift of -2x in the measurement error.

Register	Bit	Default Value	Description
	Bit[4:3]	0	To roughly adjust the temperature coefficient of the Bandgap

Figure 4-1 Register for Bandgap Circuit

Register	Bit	Default Value	Description		
	RESTL<1:0>		circuit.		
			00: 0 ppm		
			01: -58 ppm		
			10: +111 ppm		
			11: +56 ppm		
			In order to obtain the best metering performance and		
			temperature performance during normal metering, it must		
			be iterated according to the calculated result.		
			To finely adjust the temperature coefficient of the Bandgap		
ANA CTRI 1			circuit		
			000: 0 ppm		
	Bit[2, 0]		001: +7 ppm		
			010: +14 ppm		
			011: +28 ppm		
	DIL[2. U]	0	100: -32 ppm		
	REST<2:0>		101: -21 ppm		
			110: -14 ppm		
			111: -7 ppm		
			In order to obtain the best metering performance and		
			temperature performance during normal metering, it must		
			be iterated according to the calculated result.		

5. Clock

The on-chip RC oscillator circuit and the external input clock provide clocks for the V93XX:

- An external 6.5536 MHz of the pins "CTI", "CLK1". After the frequency divider, SDIV, controlled by DSP_MODE (Bit<7:4>, Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0)). This clock source for all digital block uses. After the frequency divider, ADIV, controlled by ADCKSEL (Bit25<31:30>, analog control register, 0x01, ANA_CTRL1). This clock source for ADC uses. After POR, RSTN pin reset, RX reset, or global software reset, this oscillator circuit starts to run automatically.
- On-chip 6.5 MHz (The deviation is within ±20% from chip to chip for mass production. The temperature deviation from -40~85 degree for each specific chip is less than ±5%.) RC oscillator generates the clock, "CLK2". When the CTI external input clock was disabled, it would be an optional clock source for digital block uses. This circuit can be disabled.
- On-chip 32 KHz (±50%) RC oscillator generates the clock," CLK3". This clock source for IO ports filter use. This circuit keeps on working until the system is powered off.
- External CLK (32768 Hz), input from X32KIN pin. This clock source for low-speed energy accumulator uses. The clock source of energy accumulator would be controlled by EGY_CLK_SEL (bit23, metering control register 1 (Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1))).

As mentioned above, the relationship between the 4 clocks source as the shown below:

Figure 5-1 Clock generation

Vango Technologies, Inc.

Table 5-1 Clock Generation Related Registers

	Register	Bit	Default	Description
			Value	
		Bit7 XRST_PD	0	The external input CTI clock enable. 0: enable
		Bit[22] RCCLK_PD	0	1: disable To enable the 6.5-MHz RC clock. 0: enable 1: disable The bit must be set to 0 for proper operation.
		Bit[23] XTALPD	0	To disable the CTI external input clock by set this bit to 1. By default, this circuit is enabled.
	ANA_CTRL1	Bit[29:24] RCTRIM<5:0>	0	To adjust the 6.5M RC frequency. 000000~011111: step-up the frequency by 1.25% 100000~111111: step-down the frequency by 1.25%
		Bit[31:30] ADCKSEL<1:0>	0	To select the clock frequency for the ADC. 00 corresponds to 819.2 KHz. 00: ×1 01: ×2 10: ×1/4 11: ×1/2
DSP_CTRL0 (Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0))		Bit[7:4] DSP_MODE<1:0>	0	 DSP Operating Mode. 0: 128 sampling points per cycle by DSP at 6.5536 MHz system clock 1: 64 sampling points per cycle by DSP at 6.5536 MHz system clock 2: 32 sampling points per cycle by DSP at 6.5536 MHz system clock. 3, 4, and 5: Reserved.

Register	Bit	Default	Description
		Value	
			6: 64 sampling points per cycle by DSP at 3.2768
			MHz system clock
			7: 32 sampling points per cycle by DSP at 3.2768
			MHz system clock
			8: 32 sampling points per cycle by DSP at 819.2
			KHz system clock (supported only up to 2
			channels instantaneous current RMS calculation.)
			9: 16 sampling points per cycle by DSP at 409.6
			KHz system clock (supported only up to 2
			channels instantaneous current RMS calculation.)
			Others: the same as mode 0
			To selection the clock for Energy accumulator. It
DSP_CTRL1 (Table			
2-19 Metering	B:+32		needs the stable time around 107 us when CLK
Control Register 2	BIt23	0	switch over. Please disable CF before it is stable.
(0x03,	EGY_CLK_SEL		0: 204.8 KHz
DSP_CTRL1))			1: 32768 Hz

5.1. External input high-frequency clock

Users can input 6.5536 MHz clock in CTI pin. CLK1 clock is provided for V93XX for system, metering VMA, ADC, UART/ SPI interface and energy module. If the CTI pin does not have external clock, the system automatically uses the RCH clock (CLK2 clock) for V93XX for system, metering VMA, ADC, UART/ SPI interface and energy module.

5.2. High-Frequency RC Oscillator

The V93XX has an internal high-frequency 6.5 MHz RC oscillator (The deviation is within $\pm 20\%$ from chip to chip for mass production. The temperature deviation from Celsius -40~85 degree for each specific chip is less than $\pm 5\%$.)

Under the metering mode, when CTI external input clock error, the circuit will automatically turn on and

produce clock (CLK2) to work as an optional clock source for digital circuits.

After POR, RSTN pin reset, RX reset, or global software reset, this circuit and Bandgap circuit will be working automatically.

5.3. Low-Frequency RC Oscillator

V93XX the low-frequency RC oscillator can generate a 32 KHz (±50%) RC clock (CLK3) to drive the IO ports filter (RSTN/ RX/ A0/ A1 pin) for using the signal input.

This oscillator is always on work until the system is powered off.

5.4. External Input Clock

The external can inject a 32768 Hz frequency clock into the X32KIN pin of V93XX to provide CLK4 clock for low-speed accumulation of energy barrel of V93XX.

6. RESET

6.1. Reset Related Registers

Tahlo	6-1	Docot	Dotatod	Dogistors
lable	0-T	Reset	Related	Registers

Register	Bit	Description					
		Flag bits to indicate the reset source					
		Bit22	Bit21	Bit20	Description		
0x74	Bit[22:20]	0	0	1	A POR event occurred.		
SYS_STS	RST_SOURCE	RCE 0 1 0 A RSTN event occurred.		A RSTN event occurred.			
		0	1	1	An RX reset event occurred.	1	
		1	0	0	A global software reset occurred.		
0x6c, SFTRST		Writable only, in the form of 32-bit 2' complement.					
Software	Write "0x4572BEAF" to the register to reset the system and all circuit is						
Register		back to initial state.					

6.2. Power-On Reset (POR)

In V93XX, the internal power-on reset circuit supervises the output voltage on **"DVCCLDO"** all the time. When the output voltage is lower than 1.3 V, the reset signal will be generated and force the chip into the reset state. When the output voltage is higher than 1.3 V, the reset signal will be released, and the chip will get to the Default State in 500 µs.

When a POR event occurs, the bit "**RST_SOURCE**" (Bit[22:20], 0x74, SYS_STS) will be reset to "**Ob001**".

In the reset state, the master MCU and the VMA metering architecture cannot access RAM. When the chip exits from the reset state, RAM will implement the self-checking in about 1.25 ms. If there is no error occurring, RAM can be accessed.

In the reset state, the UART/SPI serial interface is idle. The UART/SPI serial interface starts to run immediately once the chip exits from the reset state.

Figure 6-1 Timing for POR

6.3. External Reset

In V93XX, the external reset circuit supervises the status on pin **"RSTN"** all the time. When the input on pin **"RSTN"** must be driven low for at least 2 ms to force the chip into the reset state. Pull to the logic high, and 900µs later the chip will exit from the reset state and get back to the Default State.

When a RSTN event occurs, the bit "**RST_SOURCE**" (Bit[22:20], 0x74, SYS_STS) will be reset to "**0b010**".

In the reset state, the master MCU and the VMA metering architecture cannot access RAM. When the chip exits from the reset state, RAM will implement the self-checking in about 1.25 ms. If there is no error occurring, RAM can be accessed.

In the reset state, the UART/ SPI serial interface is idle. The UART/SPI serial interface starts to run immediately once the chip exits from the reset state.

6.4. RX Reset

"RX" reset depends on the communication type.

In the UART mode, when the **"RX/ MOSI"** pin continuously inputs a low level of 92.5 ms to force the chip into the reset state. Pull to the logic high, and 900 µs later the chip will exit from the reset state and get back to the Default State.

In the SPI mode, when the **"RX/ MOSI"** pin and **"A1/ SPCSN"** pin continuously inputs a low level of 92.5 ms and fed a clock source on pin **"A0/ SPCK"** which the frequency above the 50 Hz, then force the chip into the reset state. Pull to the logic high, and 900 µs later the chip will exit from the reset state and get back to the Default State

When the **"RX"** reset occurs, the bit **"RST_SOURCE"** (Bit[22:20], 0x74, SYS_STS) will be reset to **"Ob011"**.

In the reset state, the master MCU and the VMA metering architecture cannot access RAM. When the chip exits from the reset state, RAM will implement the self-checking in about 1.25 ms. If there is no error occurring, RAM can be accessed.

In the reset state, the UART/SPI serial interface is idle. The UART/SPI serial interface starts to run

immediately once the chip exits from the reset state.

Figure 6-3 Timing for RX Reset of UART

Figure 6-4 Timing for RX Reset of SPI

6.5. Global Software Reset

In V93XX, writing of **"0x4572BEAF"** in the register **"SYS_SFTRST"** (0x6C) can force the chip into the Reset State, and the chip will exit and get back to Default State in 650 µs.

When the global software reset occurs, the bit "**RST_SOURCE**" (Bit[22:20], 0x74, SYS_STS) will be reset to "**Ob100**".

In the Reset State, the master MCU and the VMA metering architecture cannot access RAM. When the chip exits from the Reset State, RAM will implement the self-checking in about 1.25ms. If there is no error occurring, RAM can be accessed.

In the Reset State, the UART serial interface is idle. The UART serial interface starts to run immediately once the chip exits from the Reset State.

Figure 6-5 Timing of Global Software Reset

7.UART

7.1. Overview

V93XX supports two communication modes, UART and SPI, which can switch between SPI communication and UART communication without using external hardware jumper. After POR reset, RSTN reset, RX reset or soft reset, V93XX uses UART communication by default. If you want to communicate by SPI, you must initialize the SPI interface once through the SPI protocol.

Support multi-machine mode, that is, when the output data port is idle, it is a high resistance state. Up to 4 V93XX share a single data bus via physical addresses A0 and A1.

The data byte received and transmitted via the UART serial interface of the V93XX is composed of 11 bits, including 1-bit start bit (logic low), 8-bit data bits, 1-bit odd parity bit and 1-bit stop bit (logic high), as shown in the following figure. When the V93XX sends command, the least significant bit and least significant byte always are shifted out firstly.

Figure 7-1 Structure of an 11-Bit data byte (from LSB to MSB)

UART protocol is a half-duplex protocol. The end of the send command for 1ms later, then V93XX would upload data.

UART supports 1200bps to 19200bps baud rate and it can self-adapting the baud rate which received from the first frame header. The baud rate will also be fine-tuned through the following communication. If the baud rate of communication has a large change, it needs rerunning the baud rate self-adapting. Before this event, it needs to set the UARTAUTOEN Bit0 of SYS_MISC to 1.

V93XX also has the command for continually writing or broadcast writing. This mode can save the parameter configurable time.

Under the following conditions, the UART transmission will be aborted and back to IDLE state.

No	Conditions	UARTERR set to 1
1	UART frame header error.	NO
2	UART overtime, each 2 Bytes needs to shorter than 20 ms.	YES
3	UART parity bit error.	YES

Table 7-1 UART communication errors

YES

7.2. Broadcast Communication

--Supports writing to consecutive registers of 1~16 addresses

- --Don't care about device address{A1,A0}
- --V93XX no response

Batch writes to register for multiple V93XX devices via broadcast writing by master MCU. This mode can save the parameter configurable time. The figure below is the command frame for broadcast writing operation.

Figure 7-2 command frame for broadcast writing operation

Table 7-2 Structure of Data Byte (B7:B0) From Master MCU to V93XX on Broadcast Operation

Order	Byte	B7	B6	В5	B4	В3	B2	B1	B0
1	HEADER	0	1	1	1	1	1	0	1
2	CMD1	To select writing (0: write 1: write 15: write	the data l N) 1 data of 3 2 data of 3 e 16 data o	ength on b 32 bits 32 bits of 32 bits	proadcast	Х*	X*	0	0
3	CMD2	X*	Start add	dress for b	eration (D_0)				
4	Data 0 Byte 0	"Bit[7:0	D]" of the target data write into register (address D_0)						

Order	Byte	B7	B6	В5	B4	B3	B2	B1	в0				
5	Data 0 Byte 1	"Bit[15:	'Bit[15:8] " of the target data write into register (address D_0)										
6	Data 0 Byte 2	"Bit[23:	Bit[23:16] " of the target data write into register (address D_0)										
7	Data 0 Byte 3	"Bit[31:	Bit[31:24]" of the target data write into register (address D ₀)										
8	CKSUM 0	Checksur CMD2, in equation CKSUM (0 Byte 2	Checksum 0. Add the above 4 target data bytes (Data 0 Byte 0~3), CMD1, and CMD2, invert the sum, and then add it to "0x33" to obtain the checksum. The equation is as below: CKSUM 0 = 0x33 + ~(CMD1 + CMD2 + Data 0 Byte 0 + Data 0 Byte 1 + Data 0 Byte 2 + Data 0 Byte 3)										
5xN+4	Data N Byte 0	"Bit[7:0]" of the	target dat	a write int	o register	(address D_N	ı=D₀+N)					
5xN+5	Data N Byte 1	"Bit[15:	8]" of the	e target da	ita write ir	ito registe	r (address [D _N =D ₀ +N)					
5xN+6	Data N Byte 2	"Bit[23:	16]" of th	ne target o	lata write	into regist	er (address	$D_N = D_0 + N$)				
5×N+7	Data N Byte 3	"Bit[31:	24]" of th	ne target d	lata write	into regist	er (address	$D_N = D_0 + N$)				
5xN+8	CKSUM N	Checksur CMD1, a checksur CKSUM N 0 Byte 2 2 + Data	Checksum N. Add the above $4 \times (N+1)$ target data bytes (Data $0 \sim N$ Byte $0 \sim 3$) CMD1, and CMD2, invert the sum, and then add it to " 0×33 " to obtain th checksum. The equation is as below: CKSUM N = $0 \times 33 + \sim (CMD1 + CMD2 + Data \ 0$ Byte $0 + Data \ 0$ Byte $1 + Data \ 0$ Byte $2 + Data \ 0$ Byte $3 + \dots + Data \ N$ Byte $0 + Data \ N$ Byte $1 + Data \ N$ Byte $3 + \dots + Data \ N$ Byte $0 + Data \ N$ Byte $1 + Data \ N$ Byte $3 + \dots + Data \ N$ Byte $0 + Data \ N$ Byte $3 + \dots + Data \ N$ Byte $3 + \dots + Data \ N$ Byte $0 + Data \ N$ Byte $3 + \dots + D$										

Order	Byte	B7	B6	B5	B4	B3	B2	B1	B0	
*X could be 0 or 1.										
If the length N equals to 0 on broadcast writing operation, master MCU only sends first 8 bytes of										
command frame to V93XX.										

7.3. Read Operation

--Supports writing to consecutive registers of 1~16 addresses

--device address {A1,A0} must be matched correctly

--V93XX would be responded

Figure 7-3 Communication protocol for read operation

Order	Byte	B7	B6	В5	B4	В3	B2	B1	В0
1	HEADER	0	1	1	1	1	1	0	1
2	CMD1	To select operation 0: write 1 1: write 1 15: write	t the dat 1 data of 3 2 data of 3	a length 32 bits 32 bits of 32 bits	on read	A1	A0	0	1
3	CMD2	X*	Start add	lress for re	ead operat	ion (D ₀)			
4	CKSUM	Checksur ``0x33″ 1	m. Add the to obtain t	e above Cl he checks	MD1 and (um. The e	CMD2, inve quation is	ert the sum, as below:	and then	add it to
	Vango Technologies							1	16 / 151

Order	Byte	B7	B6	B5	B4	B3	B2	B1	В0		
		CKSUM =	CKSUM = 0x33 + ~(CMD1 + CMD2)								
* X cou	uld be 0 or 1.										

Table 7-4 Structure of Data Byte (B7:B0) From V93XX to Master MCU on read Operation

Order	Byte	В7	B6	В5	B4	B3	B2	B1	B0			
1	Data 0 Byte 0	"Bit[7:0	"Bit[7:0]" of the target data read from register (address D ₀)									
2	Data 0 Byte 1	"Bit[15	'Bit[15:8]" of the target data read from register (address D_0)									
3	Data 0 Byte 2	"Bit[23	Bit[23:16] " of the target data read from register (address D_0)									
4	Data 0 Byte 3	"Bit[31:	'Bit[31:24]" of the target data read from register (address D_0)									
4xN+1	Data N Byte 0	"Bit[7:0	"Bit[7:0]" of the target data read from register (address $D_N=D_0+N$)									
4xN+2	Data N Byte 1	"Bit[15:	: 8]" of th	e target d	ata read f	rom regist	ter (address	5 D _N =D ₀ +1	۷)			
4xN+3	Data N Byte 2	"Bit[23	: 16]" of t	he target	data read	from regi	ster (addres	ss D _N =D₀+	-N)			
4xN+4	Data N Byte 3	"Bit[31	: 24]" of t	he target	data read	from regi	ster (addre:	ss D _N =D₀+	-N)			
4xN+5	CKSUM	Checksun comes fr then add CKSUM =	Checksum. Add the above $4 \times (N+1)$ target data bytes (Data $0 \sim N$ Byte $0 \sim 3$, comes from V93XX), CMD1, and CMD2(comes from MCU), invert the sum, and then add it to "0x33" to obtain the checksum. The equation is as below: CKSUM = $0x33 + \sim (CMD1 + CMD2 + Data 0 Byte 0 + Data 0 Byte 1 + Data 0$									

Order	Byte	B7	B6	B5	B4	В3	B2	B1	В0	
		0 Byte 2	+ Data 0	Byte 3 +	· + Da	ata N Byte	0 + Data I	N Byte 1 -	+ Data N	
		Byte 2 +	Data N B	yte 3)						
*X could	*X could be 0 or 1.									
If the length N equals to 0 on read operation, V93XX only sends 5 bytes of response frame to master										

7.4. Write Operation

MCU.

--Supports writing to consecutive registers of 1~16 addresses

--device address {A1, A0} must be matched correctly

--V93XX would be responded

Figure 7-4 Communication protocol for write operation

Table 7-5 Structure of Data I	Byte (B7:B0)	From Master MCU to	V93XX on Write Operation
-------------------------------	--------------	--------------------	--------------------------

Order	Byte	B7	B6	В5	B4	В3	B2	B1	В0
1	HEADER	0	1	1	1	1	1	0	1
2	CMD1	To select operation 0: write 1: write 15: write	t the dat 1 data of 3 2 data of 3 e 16 data o	a length 32 bits 32 bits 57 32 bits	on write	A1	A0	1	0

Order	Byte	В7	B6	B5	B4	B3	B2	B1	В0			
3	CMD2	X*	X* Start address for write operation (D ₀)									
4	Data 0 Byte 0	"Bit[7:0	" Bit[7:0] " of the target data write into register (address D_0)									
5	Data 0 Byte 1	"Bit[15:	Bit[15:8] " of the target data write into register (address D_0)									
6	Data 0 Byte 2	"Bit[23:	Bit[23:16] " of the target data write into register (address D_0)									
7	Data 0 Byte 3	"Bit[31:	Bit[31:24]" of the target data write into register (address D ₀)									
8	CKSUM 0	Checksur CMD2, in equation CKSUM (0 Byte 2	Checksum 0. Add the above 4 target data bytes (Data 0 Byte 0~3), CMD1, and CMD2, invert the sum, and then add it to "0x33" to obtain the checksum. The equation is as below: CKSUM 0 = $0x33 + \sim$ (CMD1 + CMD2 + Data 0 Byte 0 + Data 0 Byte 1 + Data 0 Byte 2 + Data 0 Byte 3)									
5xN+4	Data N Byte 0	"Bit[7:0]" of the t	target dat	a write inte	o register	(address D_N	ı=D₀+N)				
5xN+5	Data N Byte 1	"Bit[15:	8]" of the	e target da	ita write ir	ito registe	r (address [D _N =D ₀ +N)				
5xN+6	Data N Byte 2	"Bit[23:	16]" of th	ne target o	lata write	into regist	er (address	$D_N = D_0 + N$)			
5xN+7	Data N Byte 3	"Bit[31:	"Bit[31:24]" of the target data write into register (address $D_N=D_0+N$)									
5xN+8	CKSUM N	Checksur CMD1, a checksur	m N. Add nd CMD2, n. The equ	the above invert th uation is a	4×(N+1) e sum, ar s below:	target dat	a bytes (Da dd it to ``O >	uta 0~N By (33″ to o	/te 0~3), btain the			

Order	Byte	B7	B6	B5	B4	B3	B2	B1	В0
		CKSUM N	l = 0x33 +	- ~(CMD1	+ CMD2 ·	+ Data 0 E	Byte 0 + Da	ta 0 Byte	1 + Data
		0 Byte 2	+ Data 0	Byte 3 + .	+ Data	N Byte 0	+ Data N By	te 1 + Dal	ta N Byte
		2 + Data	N Byte 3)					
*X could be 0 or 1.									
If the le	the length N equals to 0 on broadcast writing operation, master MCU only sends first 8 bytes of								
commar	nd frame to V	93XX.							

Table 7-6 Structure of Data Byte (B7:B0) From V93XX to Master MCU on Write Operation

Order	Byte	B7	B6	B5	B4	В3	B2	B1	В0
		Checksu successf	m (comes ul.	from V93	3XX). Used	to verify	that the wr	ite operat	ion was
1	CKSUM	operation	M and CKS n was suc M and CKS	ceeded. 50M N (co	mes from	master M	CU) was equ 1CU) was n	uai, this ti ot equal,	me write this time
		write ope	eration wa	is failed.					

7.5. Block Reading Operation

In order to facilitate the user to read the required data at one time and improve communication efficiency, V93XX provides address mapping function: The user maps the address of the data item that needs to be continuously operated to the address register, so that the user can perform the block read operation on the data in different places by operating the address register.

Up to 16 data register addresses can be mapped.

The block reading operation can start from any position in the mapped address register. If the address plus the number of reads exceeds the buffer size, the read is started from the beginning. For example, 10 data are read from the 13th mapping address, and after the 16th address, the data of 6 addresses is continuously read from the first one.

Figure 7-5 address mapping for block reading

Feature:

--Support block reading operation by address mapping from 1~16 addresses that are not consecutive.

--Device address {A1,A0} must be matched correctly.

--V93XX would be responded.

		<u> </u>				
Figure	7-6	Communication	nrotocol	tor block	reading.	operation
inguic	, 0	communication	prococor		(i cuunig	operation

Table 7-7 Structure of Data Byte (B7:B0) From Master MCU to V93XX on block reading Operation

Order	Byte	B7	B6	В5	B4	В3	B2	B1	В0
1	HEADER	0	1	1	1	1	1	0	1
2	CMD1	To select	the data l	ength on l	olock	A1	A0	1	1

Order	Byte	B7	B6	В5	B4	B3	B2	B1	B0
		reading c	operation						
		0: write	1 data of 3	32 bits					
		1: write 2	2 data of 3	32 bits					
		15: write	16 data c	of 32 bits					
3	CMD2	X*	χ*	χ*	Х*	To select the reading operation and the SYS_BLK1_Context of the SYS_Context of the SYS_BLK1_Context of the SYS_BLK1_Context of the SYS_BLK1_Context of the SYS_Context of th	he start add eration eading add f SYS_BLKX ole: if N=4 ig start add address fro ADDR regis ster address as below: iddress ADE LK1_ADD address ADE BLK1_ADE iddress ADE BLK1_ADE iddress ADE BLK1_ADE	Iress on blo resses are (_ADDR (length is ress), it wo om the b ister in the ses for block DR4 in the l DR5 in the DR5 in the DR5 in the DR5 in the DR5 in the DR6 in the l	set by 4 s 5) and ould start it7~0 of ADDR4. k reading Bit7~0 of Bit7~0 of Bit15~8 Bit23~16 Bit23~16 Bit31~24 Bit31~24
4	CKSUM	Checksur	n. Add the	e above Cl	MD1 and	3: stored a of the SYS 4: stored a of the SYS 5: stored a the SYS_B	oddress ADE _BLK1_ADE oddress ADE _BLK1_ADE oddress ADE LK2_ADD	DR6 in the l DR7 in the l DR8 in the l	Bit31~2 Bit31~2 Bit7~0 add it

Order	Byte	B7	B6	B5	B4	В3	B2	B1	В0
		``0x33″ †	to obtain t	he checks	um. The	equation is	as below:		
		$CKSUM = 0\mathbf{x}33 + \sim (CMD1 + CMD2)$							
*X cou	ld be 0 or 1.								

Table 7-8 Structure of Data Byte (B7:B0) From V93XX to Master MCU on block reading Operation

Order	Byte	B7	B6	В5	B4	B3	B2	B1	В0		
1	Data 0	"Bit[7:0	3it[7:0] " of the target data read from register (address ADDR _M)								
	Byte 0										
2	Data 0	"Bit[15:	81" of the	e target da	ata read fr	om registe	er (address /				
	Byte 1	511[151		e tal get at		onnregiote					
	Data 0										
3	Byte 2	"Bit[23:	16]" of th	ne target o	data read f	from regis	ter (address	s ADDR _M)			
	Data 0										
4	Byte 3	"Bit[31:	24]" of ti	ne target o	data read f	from regis	ter (address	s ADDR _M)			
4xN+1	Data N Byte 0	"Bit[7:0	"Bit[7:0]" of the target data read from register (address ADDR _{M+N})								
4xN+2	Data N Byte 1	"Bit[15:	8]" of the	e target da	ata read fr	om registe	er (address /	ADDR _{M+N})			
4×N+3	Data N Byte 2	"Bit[23:	16]" of tl	ne target o	data read f	from regis	ter (address	S ADDR _{M+N})		
4xN+4	Data N Byte 3	"Bit[31:	24]" of tl	ne target o	data read f	from regis	ter (address	S ADDR _{M+N})		
		Checksu	n. Add th	ie above 4	4×(N+1) t	arget dat	a bytes (Da	nta 0~N B	yte 0~3,		
4xN+5	CKSUM	comes fr	om V93X>	<), CMD1,	and CMD2	2(comes fr	om MCU), i	nvert the s	sum, and		
		then add	it to "0x	33" to obt	ain the ch	ecksum. T	he equation	is as belo	w:		

Order	Byte	B7	B6	В5	B4	B3	B2	B1	В0	
		CKSUM =	0x33 + ^	~ (CMD1 +	- CMD2 +	Data 0 By	te 0 + Data	0 Byte 1	+ Data 0	
		Byte 2 +	Data 0 B	yte 3 +	+ Data I	N Byte 0 +	- Data N By	te 1 + Dai	ta N Byte	
		2 + Data	N Byte 3)						
*X could	*X could be 0 or 1.									

If the length N equals to 0 on read operation, V93XX only sends 5 bytes of response frame to master MCU.

8.SPI

8.1. Overview

V93XX supports two communication modes, UART and SPI, which can switch between SPI communication and UART communication without using external hardware jumper. After POR reset, RSTN reset, RX reset or soft reset, V93XX uses UART communication by default. If you want to communicate by SPI, you must initialize the SPI interface once through the SPI protocol.

Support multi-machine communication mode, that is, when the output data port is idle, it is a highresistance state. Through SPICSN chip selection signal support multiple V93XX to share a data bus.

The SPI interface of V93XX is a standard 4-wire or 3-wire SPI interface. 4-wire SPI mode must have a 50µs interval between every 2 read and write operations. 3-wire SPI mode has been low at chip select pin. When the V93XX sends command, the least significant byte and most significant bit always are shifted out firstly. The polarity and phase are 0.

When SPI reading register, the maximum speed can be 1/4 of system CLK; when reading RAM, the maximum speed can be 1/16 of system CLK. When the MCU reads the RAM or register of V93XX, if V93XX does not get the data in time, V93XX will send the wrong checksum byte to the MCU.

The RAM address range is 0x11~0x38, 0x43~0x54, 0x68, and 0x69. The remaining addresses are registers.

Before performing SPI read and write, it needs to write 0x5A7896B4 to the 0x7F addresses. If it does not do this, any SPI communication will be ignored.

SPI overtime mechanism: During communication, the time between the rising edges of every 2 SPCK needs to be shorter than 20ms, otherwise an SPI timeout is considered to occur.

Under the following conditions, an exception occurs in the SPI communication.

No	Condition	SPI_ERR set to 1	The condition for the next successful
1	SPI overtime (rising edge of every 2 SPCK needs	Yes	No

Table 8-1 SPI communication errors

	to shorter than 20 ms).		
2	4-wire SPI CLK error (not equals to 48 clocks).	Yes	No
3	V93XX reset happens.	No	Re-initialize SPI interface

8.2. Write Operation

After the write operation is completed, V93XX will not return a valid response to the MCU. It needs to read back the value of the register to confirm the success of the write operation.

V93XX

Figure 8-1 Communication protocol for SPI write operation

Table 8-2 Structure of Data By	te (B7:B0) From Master MCU	to V93XX on write Operation
--------------------------------	----------------------------	-----------------------------

Order	Byte	B7	B6	В5	B4	В3	B2	B1	B0
1	CMD	Register	address f	or write o	peration				0
2	Data Byte 0	"Bit[7:0)]" of the	target da	ta write in	to registe	r		
3	Data Byte 1	"Bit[15	:8]" of th	e target d	ata write i	nto regist	er		
4	Data Byte 2	"Bit[23	'Bit[23:16]" of the target data write into register						
5	Data Byte 3	"Bit[31	: 24]" of t	he target	data write	e into regis	ster		
6	CKSUM	Checksu invert th equation	m 0. Add ne sum, a is as belo	the above and then ow:	e 5 target add it to	data byte `` 0x33 ''	s (Data Byto to obtain th	e 0~3) an ne checks	d CMD1, um. The

Order	Byte	B7	B6	В5	B4	В3	B2	B1	В0
		CKSUM =	= 0x33 + 4	~(CMD +	Data Byte	0 + Data	Byte 1 + D	ata Byte	2 + Data
		Byte 3)							

8.3. Read Operation

Figure 8-2 Communication protocol for SPI read operation

Table 8	8-3	Structure	of [Data	Byte	(B7:B0)	From	Master	MCU	to	V93X)	(on	read	Operat	tion
					- /	()									

Order	Byte	B7	B6	В5	B4	В3	B2	B1	В0	
1	CMD	Register	Register address for read operation 1							
2	_*									
3	_*	MCU gen	CU generates 40 clocks is used for receiving 5 bytes of response frame sent							
4	_*	back by V	pack by V93XX.							
5	-*	MCU sen	ACU sends any data has no effect on the operation.							
6	_*									
*- this	*- this byte could be any value									

Table 8-4 Structure of Data Byte (B7:B0) From V93XX to Master MCU on read Operation

Order	Byte	B7	B6	В5	B4	В3	B2	B1	B0
1	_*	When the have to t	When the MCU sends a CMD to the V93XX, the data received by the MCU doesn't have to be concerned.					J doesn't	
2	Data Byte 0	"Bit[7:0	"Bit[7:0]" of the target data read from register						

Order	Byte	B7	B6	B5	B4	B3	B2	B1	B0	
3	Data Byte 1	"Bit[15:	'Bit[15:8]" of the target data read from register							
4	Data Byte 2	"Bit[23:	Bit[23:16]" of the target data read from register							
5	Data Byte 3	"Bit[31:	'Bit[31:24]" of the target data read from register							
6	CKSUM	Checksur V93XX) a to obtain CKSUM Byte 3)	Checksum. Add the above 4 target data bytes (Data Byte 0~3, comes from V93XX) and CMD1 (comes from MCU), invert the sum, and then add it to "0x33" to obtain the checksum. The equation is as below: CKSUM = $0x33 + \sim$ (CMD + Data Byte 0 + Data Byte 1 + Data Byte 2 + Data Byte 3)							
*- this	*- this byte could be any value									

8.4. Initialize interface

The default communication interface of V93XX is UART. If it wants to initialize the SPI communication interface, it needs to write 0x5A7896B4 to the 0x7F address, that is, the MCU must sends the following 6 bytes of data to V93XX via the SPI protocol.

Table 8-5 SPI interface initialization data (hexadecimal)

CMD	Data Byte 0	Data Byte 1	Data Byte 2	Data Byte 3	CKSUM
0xFE	0xB4	0x96	0x78	0x5A	0x18

Because of the SPI write operation, V93XX will not send a valid response to the MCU. After writing 0x5A7896B4 to the 0x7F address to complete the SPI interface initialization, it cannot directly confirm whether the initialization is valid. It is recommended to read any readable register and check if the checksum byte is correct to confirm that the SPI interface initialization process is completed correctly.

After POR, RSTN pin reset, RX reset, or global software reset occurs, the SPI interface is reset and the V93XX is restored to the UART communication interface. After that, the initialization process of SPI

interface needs to be performed again before SPI read-write operation.

8.5. 4-wire SPI Mode

-- SPI interface initialization must be performed after POR, RSTN pin reset, RX reset, or global

software reset occurs on V93XX

-- There must be a 50 μ s interval between every 2 read or write operations

-- The number of clocks per read or write must be 48

-- Chip select pin must be pulled back high after each read or write operation

Figure 8-3 Communication protocol for 4 wire SPI mode

8.6. 3-wire SPI Mode

-- SPI interface initialization must be performed after POR, RSTN pin reset, RX reset, or global

software reset occurs on V93XX

- -- Chip select pin is always low
- -- The number of clocks per read or write must be 48
- -- The clock pin must be pulled low for at least 400µs before each read or write operation

SPICSN (Always low) SPICLK		_
SPIMOSI	{1'b0, ADDR[6:0]} Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3 Check Sum	} write mode
SPIMISO)	
SPIMOSI	(1'b0, ADDR[6:0]}	- Liroad mode

Figure 8-4 Communication protocol for 3 wire SPI mode

9.DSP

9.1. Overview

Metering DSP are mainly used in calculating total-wave active power, fundamental-wave active power, total/ fundamental-wave reactive power, total-wave apparent power, total-wave RMS and fundamental-wave RMS; also provides power grid events to detect and waveform storage functions.

The energy accumulator can flexible configuration, providing 2 high-speed energy accumulators and 6 low-speed energy accumulators.

Waveform data can output to external by DMA or internal storage.

9.2. Features

--Support 1 voltage channel and 2 current channels metering at the same time

--Selectable the full-wave bandwidth

--Provide 2 configurable fundamental-wave channels which can calculate power and RMS of fundamental-wave.

--Selectable refresh time for average power value or average RMS.

--Provide the average RMS of 10 or 12 cycles which used in voltage flicker detection.

--Support to determine the power-creep, voltage swell or dip, over or under- voltage and over or under- current.

9.3. Functional Diagram

Figure 9-2 Functional Diagram 2 of Metering DSP

9.4. Application Description

9.4.1. Phase Calibration

Table	9-1	Phase	Calibration	Description
Tuble	J T	i nuse	Cumbration	Description

DSP_MODE	calibration accuracy(degree)	Calibration range(degree)
0x00, 0x01, 0x02	0.005493164	±4.21875
0x06, 0x07	0.010986328	±8.4375
0×08	0.021972656	± 16.855

Phase correction of IA phc_ia = Angle to be corrected /calibration_acuracy

Phase correction of IB phc_ib = Angle to be corrected /calibration_acuracy

IA and IB error correction values are combined in complement form and written into the error correction register (0x33, DSP_CFG_PHC).

9.4.2. Frequency Calculation

V93XX supports frequency measurement, which is stored in the grid frequency register (0x21, DSP_DAT_FRQ). Users need to configure the bandpass filter coefficient according to different DSP_MODE (Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0)). For details, please refer to the bandpass filter coefficient register (Table 2-41 Bandpass Filter Register (0x37, DSP_CFG_BPF)).

The user accumulates the number of cycles and the DSP_MODE configuration frequency constant through the FRQ_SEL configuration frequency test of the metering control register 0 (0x02, DSP_CTRL0).

Grid frequency = wave_cnt*freq_const/DSP_DAT_FRQ

Table 9-2 Frequency registe	er source FRQ_SEL description
-----------------------------	-------------------------------

RQ_SEL	wave_cnt
0	16

1	1
2	64

Table 9-3 Frequency Constant Description

DSP_MODE	Frequency constant
0×08	1600
0x06, 0x07	3200
0x00, 0x01, 0x02	6400

9.4.3. Phase Test

Metering chip supports voltage phase and current phase measurement. The operation principle is, master MCU sends command to register DSP_PHS_STT (0x5f) and sets to 1 via UART/SPI interface. After the metering chip is decoded as a phase measurement command, it starts to use the 6.4 KHz for sampling frequency (When DSP_MODE is 0, 1, 2, the sampling frequency of voltage signal used for phase testing is 6.4 KHz. When DSP_MODE is 6 and 7, the sampling frequency of voltage signal used for phase testing is 3.2 KHz) to counting. Until positive zero-crossing events happened, it stops counting. This counting value will write into the voltage phase register DSP_PHS_U (0x62) and current phase register DSP_PHS_I (0x65). It also records two voltage sampling values before and after the positive zero-crossing DSP_PHS_UN (0x63), DSP_PHS_UP (0x64) and two current sampling values before and after the zero-crossing DSP_PHS_IN (0x66), DSP_PHS_IP (0x67). User can obtain better accurate phase value by interpolation method.

9.4.4. Power-creep Detection

Active power, reactive power, and apparent power support the power-creep function. See Table 2-32 Power-creep Threshold Register. When the instantaneous active power/reactive power/apparent power of the channel A and the channel B are higher than the upper threshold, the startup state is entered. When the instantaneous active power/reactive power/apparent power of the channel A and the channel

B are lower than the upper threshold, the power-creep state is entered.

The user can check whether the instantaneous active power/reactive power/apparent power is in the power-creep state by Bit17~Bit12 of the SYS_STS system status register description (0x74, SYS_STS).

10. Active Waveform upload and buffer

V93XX waveform data can be transferred through DMA, or stored locally through waveform buffer. Trigger mode supports command trigger and event trigger.

10.1. Active Waveform upload

10.1.1. Overview

The V93XX supports the DMA mode for data transmission and sends up to 3 original waveform data to the external MCU through the SPI interface host mode. The user can set the active waveform upload through the metering control register 5 (0x07, DSP_CTRL5), and configure the active waveform data upload IO port P0~P6 through IO configuration register 0 (0x7D, SYS_IOCFG0) and IO configuration register 1 (0x7E, SYS_IOCFG1).

The number of sampling points per cycle of the DMA transmission data is related to DSP_MODE (Bit[7:4]) of DSP_CTRL0 (Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0)); the number of channels is related to Bit10~8 of DSP_CTRL5 (0x07, DSP_CTRL5). Its relationship is shown in the following table:

The number of waveform transmission	Sampling points (related to DSP_MODE)	Baud Rate
1	256	819.2 KHz
3	128	819.2 KHz
2	128	819.2 KHz
1	128	409.6 KHz
3	64	409.6 KHz
2	64	409.6 KHz
1	64	204.8 KHz
1、2、3	32	204.8 KHz

Table 10-1 Active waveform data upload configuration

10.1.2. Timing and Format

The V93XX transmits the original waveform of the signal to the peripheral device via the DMA SPI interface. The SPI polarity and phase are configurable. When the polarity is 0 and the phase is 0, the transmission timing is as follows:

Figure 10-1 Communication timing of DMA SPI

Transmission mode: The transmission of 32-bit data is completed at one time. The format of the data frame for each transmission is as follows:

Table	10-2	Active	waveform	data	upload	format

Bit	Contents
31:30	Same as Bit29.
29:8	The original waveform of 22-bit for each channel ADC signal source.
7	0
	Indicates whether the present waveform data is from a voltage channel.
6	0: no
	1: yes
	Indicates whether the present waveform data is from a channel IA.
5	0: no
	1: yes

	Indicates whether the present waveform data is from a channel IB	
4	0: no	
	1: yes	
3:1	000	
0	Odd parity bit. The check range is the forward 31bit.	

10.2. Waveform Buffer

After the waveform buffer function is enabled, the waveform data is stored in the RAM, supporting single-channel waveform data storage and dual-channel waveform data simultaneous storage mode. If the waveform buffer of three channels is enabled at the same time, the channel IB is invalid. The user can configure the waveform buffer and start and end condition selection by metering control register 5 (0x07, DSP_CTRL5). After the waveform buffer configuration is completed, the user can check whether the waveform buffer is completed by the WAVE_STORE of the system interrupt status register (0x72, SYS_INTSTS). After completion, the user can obtain waveform buffer data by repeatedly reading the waveform data register (0x69, DAT_WAVE), and it can read up to 309 data every time.

channel	High 16Bit	Low 16Bit
ΙΑ	IADATA _{2n+1}	IADATA _{2n}
IB	IBDATA _{2n+1}	IBDATA _{2n}
U	UDATA _{2n+1}	UDATA _{2n}
IA+IB	IBDATAn	IADATAn
IA+U	IADATAn	UDATAn
IB+U	IBDATA _n	UDATAn
IA+IB+U (the channel IB is invalid at this time)	IADATA _n	UDATAn

Table 10-3 waveform buffer data format

Where the range of n is $0 \sim 308$

11. Electrical Signal monitoring

11.1. Zero-crossing Detection

The V93XX supports zero-crossing detection for voltage channel and current channel (the zero-crossing channel can be selected as the channel IA or channel IB by Bit20 of Metering Control Register 1 (Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1)). The zero-crossing direction can be selected by Bit19~Bit18 of the metering control register 1 (0x03, DSP_CTRL1). When the voltage/current channel signal has a zero-crossing event, the voltage zero-crossing flag USIGN/current zero-crossing flag ISIGN of the system interrupt status register (0x72, SYS_INTSTS) is set to 1. The user needs to write 1 to clear.

When the voltage/current zero-crossing interrupt output is enabled, USIGN/ISIGN of the system interrupt enable register (0x73, SYS_INTEN) is set to 1. To configure the voltage/current zero-crossing interrupt output by configuring IO Configuration Register 0 (0x7D, SYS_IOCFG0) or IO Configuration Register 1 (0x7E, SYS_IOCFG1). The output level of pin Px is automatically inverted according to the voltage zero-crossing flag USIGN/current zero-crossing flag ISIGN.

To configure the voltage/current zero-crossing interrupt output square wave by configuring IO Configuration Register 0 (0x7D, SYS_IOCFG0) or IO Configuration Register 1 (0x7E, SYS_IOCFG1). The output level of pin Px is automatically inverted according to the voltage/current zero-crossing status in real time. Each time a zero-crossing event occurs, the IO port is inverted once.

The following figure is configured to enable the zero-crossing interrupt output. When the zero-crossing detection mode is selected as the negative zero-crossing point, the USIGN/ISIGN flag bit, the zero-crossing interrupt output, and the zero-crossing output square wave waveform.

Figure 11-1 output waveform for voltage/current zero-crossing

11.2. Voltage Swell/Dip

The V93XX can be programmed to indicate voltage swell/dip. See Table 2-33 Voltage Swell or Dip Threshold Register.

When the voltage RMS value is above the upper limit of the voltage swell threshold, the voltage swell status bit (USWELL of the SYS_STS system status register (0x74, SYS_STS)) is set to 1. At the same time, the voltage swell flag (USWELL of the system interrupt status register (0x72, SYS_INTSTS)) is set to 1, and the flag bit is written to 1 to clear.

When the voltage RMS value is lower than the lower limit of the voltage swell threshold, the voltage swell status bit (USWELL of the SYS_STS system status register description (0x74, SYS_STS)) is restored to 0.

When the voltage RMS value is lower than the lower limit of the voltage dip threshold, the voltage dip status bit (UDIP of the SYS_STS system status register (0x74, SYS_STS)) is set to 1. At the same time, the voltage dip flag (UDIP of the system interrupt status register (0x72, SYS_INTSTS)) is set to 1, and the flag bit is written to 1 to clear.

When the voltage RMS value is higher than the high limit of the voltage dip threshold, the voltage dip status bit (UDIP of the SYS_STS system status register description (0x74, SYS_STS)) is restored to 0.

At the same time, the voltage swell/sag time record can be obtained by reading the register DAT_SWELL_CNT/DAT_DIP_CNT, and the half wave is in units. 24Bit is valid. Write any value to this register to clear the count value.

The voltage swell interrupt flag and voltage dip interrupt flag can be configured by configuring the IO port output. See Table 2-14 IO Configuration Register 0 (0x7D, SYS_IOCFGX0) and Table 2-16 IO Configuration Register 1 (0x7E, SYS_IOCFGX1).

11.3. Over-voltage and under-voltage/Over-current and

under-current

Figure 11-2 Over-voltage and under-voltage/Over-current and under-current detect

The V93XX can be programmed to indicate over-voltage/under-voltage of channel U, over-voltage/undervoltage of channel IA, and over-voltage/under-voltage of channel IB. See Table 2-34 Fast detection Threshold Register. The user can enable the detection for over-voltage/under-voltage of channel U, overcurrent/under-current of channel IA, and over-current/under-current of channel IB by FDUEN, FDIAEN, and FFIBEN of metering control register 4 (Table 2-22 Metering Control Register 4 (0x06, DSP_CTRL4)). The detection source supports high-pass filters and by-pass. The over-voltage or under-voltage/overcurrent or under-current detection time length is selectable.

1) Support waveform monitoring of three ADCs.

2) Each ADC waveform monitor has two thresholds: upper threshold (over-voltage, over-current); lower threshold (under-voltage, under-current)

3) Exceeding the upper limit threshold sample points: For example, if the set value is 4, it means that if more than 4 of the half cycle sampling points exceed the upper limit threshold, the half cycle waveform

is considered to exceed the upper limit.

4) Exceeding the upper threshold half-cycle number: For example, if the set value is 2, it means that if two consecutive half-cycles are exceeding the upper limit, an over-voltage or over-current event is considered to occur.

5) Below the lower limit threshold sample points: For example, if the set value is 4, it means that if low than or equal to 4 of the half cycle sampling points exceed the low limit threshold, the half cycle waveform is considered to below the lower limit.

6) below the lower threshold half-cycle number: For example, if the set value is 2, it means that if two consecutive half-cycles are below the lower limit, an over-voltage or over-current event is considered to occur.

7) When the event occurs, the flag bit is generated. The user can check the system status bit (SYS_STS system status register (0x74, SYS_STS)) and the flag bit (system interrupt status register (0x72, SYS_INTSTS)).

8) The corresponding event flag can be configured by interrupt enable and IO port output.

9) Response time: When the half-wave number is set to 1 and enabled or disabled the high-pass filter, the response time is 10 ms, that is, when the input signal exceeds the threshold, the event interrupt can be output after a half cycle.

12. Energy Accumulator

Figure 12-1 Functional block diagram of energy bucket

The V93XX has eight energy accumulators, including two high-speed energy accumulators and six lowspeed energy accumulators. Each energy accumulators have four accumulation modes: power accumulation, current RMS accumulation, constant accumulation, and configurable fundamental channel accumulation.

The power accumulation is enabled by the channel an accumulation (A_SEL) and the channel B accumulation (B_SEL), which can realize only accumulating channel A power, only accumulating channel B power, and accumulating A and B power. Power can be selected for active power, reactive power and apparent power by TYPE_SEL.

The current accumulation is enabled by the channel An accumulation (A_SEL) and the channel B accumulation (B_SEL), which can realize only accumulating channel IA RMS, only accumulating channel

IB RMS, and accumulating IA and IB RMS. Accumulating two-channel IA and IB RMS value can be selected by TYPE_SEL to accumulate the summation or accumulation difference of two channels (RMSIA+RMSIB or RMSIA-RMSIB).

The constant accumulation is not affected by enabling the A/B channel accumulation.

The power accumulation is enabled by the channel an accumulation (A_SEL) and the channel B accumulation (B_SEL), which can realize only accumulating channel A power, only accumulating channel B power, and accumulating A and B power. Power can be selected for active power, reactive power and apparent power by TYPE_SEL.

Configurable fundamental channel accumulation, enabled by A channel accumulation (A_SEL) and B channel accumulation switch, which can realize only accumulating fundamental channel 1 data, accumulating only fundamental channel 2 data, accumulating fundamental channel 1 plus accumulating fundamental channel 2.

There are four types of data operation that are accumulated for each input energy accumulator. Taking the active power of two channels as an example, the operation method is as follows.

0: The energy accumulator only accumulates positive numbers. Only accumulate data with PA+PB>0. If PA+PB<0, do not accumulate.

1: The energy accumulator only accumulates negative numbers (in this case, the actual accumulated value is a positive value of the original value conversion). Only data with PA+PB<0 (abs (PA+PB)) is added. If PA+PB>0, do not accumulate.

2: The energy accumulator accumulates the original value. Accumulate PA+PB.

3: The energy accumulator accumulates the absolute value. Accumulate abs (PA+PB)

12.1. High-speed Energy Accumulator

To enable high-speed energy accumulator 1, it needs to configure CALCEN1 (Bit[6]) in DSP_CTRL1 (Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1)). To enable high-speed energy accumulator 2, it needs to configure CALCEN2 (Bit[7]) in DSP_CTRL1. The default accumulative acceleration of the high-speed energy accumulator is 204.8 KHz, and 32768 Hz can also be selected by the energy accumulator clock (bit23 in DSP_CTRL1).

High-speed energy accumulator supports CF output.

12.2. Low-speed Energy Accumulator

The six low-speed energy accumulators are enabled by DGY_LC_EN (Bit[15]) in DSP_CTRL1 (Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1)). The default accumulated acceleration is 50 Hz.

The accumulation speed of low-speed energy accumulator is controlled by CURDAT_RATE (Bit[31]) in DSP_CTRL0 (Table 2-18 Metering Control Register 0 (0x02, DSP_CTRL0)) and LCF_ACC (Bit[22]) in DSP_CTRL1.

When CURDAT_RATE=0:

LCF_ACC=0, the accumulation period of the energy buckets 3, 4, 5, 6, 7, 8 is 20 ms;

LCF_ACC=1, the accumulation period of the energy buckets 3, 4, and 5 is 10 ms, and the energy buckets 6, 7, and 8 are not accumulated.

• When CURDAT_RATE=0:

LCF_ACC=0, the accumulation period of the energy accumulators 3, 4, 5, 6, 7, 8 is 20 ms;

LCF_ACC=1, the accumulation period of the energy accumulators 3, 4, and 5 is 10 ms, and the energy accumulators 6, 7, and 8 are not accumulated.

• When CURDAT_RATE=1:

LCF_ACC=0, the accumulation period of the energy accumulators 3, 4, 5, 6, 7, 8 is 40 ms;

LCF_ACC=1, the accumulation period of the energy accumulators 3, 4, and 5 is 20 ms, and the energy accumulators 6, 7, and 8 are not accumulated.

12.3. CF Output

V93XX supports 2 channels of CF. The CF output is configured by the Meter Control Register 1 (Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1)) to select the IO port output.

CF supports source selection. It can be selected from the energy accumulator 1 or the energy accumulator 2.

CF supports polarity selection, pulse width selection, and accelerated weak-signal calibration.

Refer to the description of CF in Metering Control Register 1 (0x03, DSP_CTRL1) for details.

12.4. Energy Accumulator Power-creep Detection

Energy accumulator anti-creep threshold. When anti-creep energy accumulator exceeds the EGY_CRPTH and high-speed energy accumulator not exceeds the EGY_PWRTH, the accumulating value of high-speed accumulator will be cleared.

There is a power-creep energy accumulating register for energy accumulator 1 and 2, which they have the same accumulation speed.

User should configure threshold for the power-creep threshold register (EGY_CRPTH) and energy accumulating threshold register (EGY_PWRTH). If the accumulating value of power-creep energy accumulator register reaches the value of EGY_CRPTH first, the energy accumulating register will be cleared, and system enter the power-creep status. When the accumulating value of energy accumulating register reaches the value of EGY_PWRTH, the power-creep energy register will be cleared, system start to work and operating normally.

The actual bit width of register EGY_CRPTH is 32bit. The register contents will be padded with 0s automatically in the 4 least significant bits when the power-creep calculated. It would be calculated after extended to 36 digits.

User can judge whether in power-creep status through SYS_STS (BIT19, BIT18) .

12.5. Active Accumulation uploading Interface

Active data uploading interface can configure pins, P0/ P1/ P2/ P3/ P4/ P5/ P6, to be the active data interface through SYS_IOCFGX.

1. Asynchronous transfer mode by 1 data wire.

2. Interface configuration: 11-bit transmission (start bit + 8 data bit + parity bit + stop bit)

Communication baud rate: SPI communication data rate is 4800, it also can operate at 9600. UART communication data rate is same as present baud rate, also double the present baud rate.

To enable the function of double baud rate if BIT17 setting to 1 at the metering control register 1 (Table 2-19 Metering Control Register 2 (0x03, DSP_CTRL1)).

3. Communication time interval: 20 ms/ 40 ms (the same to instantaneous power refresh time)

4. Frame header: 0x7D

5. Checksum: the energy accumulator 1 accumulating data plus the energy accumulator 2 accumulating data. Total accumulate 8 bytes and reverse them, then plus 0x33 to obtain the checksum.

6. Frame length: 10 bytes

7. To enable this block by BIT 16 of metering control register 1 (DSP_CTRL1).

Protocol format as below:

frame	the energy accumulator 1	the energy accumulator 2	checksum
header	accumulating data	accumulating data	
0x7D	4 bytes	4 bytes	1 byte

13. Signal IO Ports

13.1. Overview

The V93XX provides up to seven signal outputs, and seven output signals are used to map the internal output sources.

13.2. Functional Description

The seven signal output ports can be configured as CF output, energy upload interface, waveform active upload DMA channel interface, zero-crossing square wave and four types of interrupt output. The signal output port can be set to output a single signal, or it can be set to output certain types of interrupt signals. See Table 2-14 IO Configuration Register 0 (0x7D, SYS_IOCFGX0) and Table 2-16 IO Configuration Register 1 (0x7E, SYS_IOCFGX1) for details.

1st type interruption: current zero-crossing interruption, voltage zero-crossing interruption, highspeed energy accumulator 1/2 overflow interruption.

2nd type interruption: waveform refreshes interruption, instantaneous RMS refresh interruption, average RMS refreshes interruption, instantaneous power value refresh interruption, average power value refreshes interruption, waveform storage finish interruption, waveform storage overflow interruption and waveform data upload finished interruption.

3rd type interruption: IB channel under-current interruption, IB channel over-current interruption, IA channel under-current interruption, IA channel over-current interruption, voltage channel undervoltage interruption, voltage channel over-voltage interruption, voltage dip interruption and voltage swell interruption.

4th type interruption: SPI communicating error interruption, UART communicating error interruption, parameters self-checking error interruption, phase measurement finished interruption, power-down interruption, reference error interruption, CTI external input clock error interruption and RAM selfchecking error interruption.

Figure 13-1 Functional Block Diagram of signal IO ports

Description:

V93XX Datasheet

1) When the output port is used as the CF output, it is supported to set the width of the output pulse and select the output polarity. When the output period is less than twice the CF output pulse width, CF is output at a duty cycle of 50%. For example, if the output width is 80 ms and the output period is less than 160 ms, it will be output according to the duty cycle of 50%.

2) Using the UART protocol when the TX output for energy upload.

3) When used as the interrupt event output port, the output port defaults to low level output. If the event occurs, it outputs a high level until the user clears the event flag bit, and the output state returns to the default level.

4) When used as a zero-crossing square wave output, the output port defaults to a low-level output. If configured as a positive zero-crossing, the IO port flips when the signal transitions from a negative signal to a positive signal.

5) When used as a DMA output port, the SPI protocol is required, and the user is required to select the SPLK, SPDO, and SOCS ports.

14. Outline Dimensions

Figure 14-1 Outline dimension for V9381

Figure 14-2 Outline dimension for V9360

V93XX Datasheet

Figure 14-3 Outline dimension for V9340/V9340T

