

Specifications are subject to change without notice.

© 2021 Vango Technologies, Inc.

This document contains information that is proprietary to Vango Technologies, Inc.

Unauthorized reproduction of this information in whole or in part is strictly prohibited.

Revision History

Date	Version	Description
2015.04.22	0.1	Initial release
2016.02.22	0.2	 Modified total/fundamental active/reactive power calculation equations: Equation 7-9, Equation 7-10, Equation 7-11, and Equation 7-12 Modified "Ai" and "Au" to the peak values of current/voltage inputs in 7.7 Power Calculation
2018.03.12	5.0	• In order to obtain the best metering performance and temperature performance during normal metering, Bandgap Circuit must be configured according to the calculated result. The calculation method, please refer to Bandgap Circuit chapter.
2018.05.31	5.1	Modify the formula of Phase Compensation.
2019.04.09	7.0	 Modify the storage temperature to -55~150°C Modify Absolute Maximum Ratings Modify Calibration Step
2021.04.19	7.1	Update IEC Standard

Features

- 5 V power supply: $3.0 \text{ V} \sim 5.5 \text{ V}$
- Reference: 1.188 V (Typical drift 10 ppm/°C)
- Typical power dissipation in full operation:
 1.5 mA
- Highly metering accuracy:
 - ✓ Supporting the requirements of IEC 62053-21:2020/ IEC 62053-22:2020 and IEC 62053-23:2020.
 - ✓ Less than 0.1% error in active energy metering over a dynamic range of 5000:1
 - ✓ Less than 0.1% error in reactive energy metering over a dynamic range of 3000:1
- Two independent oversampling Σ/Δ ADCs: One for voltage and one for current
- Various measurements:
 - ✓ DC components of voltage and current signals
 - ✓ Total and fundamental raw/instantaneous /average current and voltage RMS
 - ✓ Total and fundamental raw/instantaneous /average active and reactive power
 - ✓ Line frequency
- Supporting current detection
- Supporting UART serial interface, configurable baud rate
- Current input: Shunt resistor/CT
- Crystal frequency: 6.5536 MHz or 3.2768 MHz
- Operating temperature: -40°C ~ +85°C
- Storage temperature: -55°C ~ +150°C
- Package: 16-SOP
- Built-in WDT

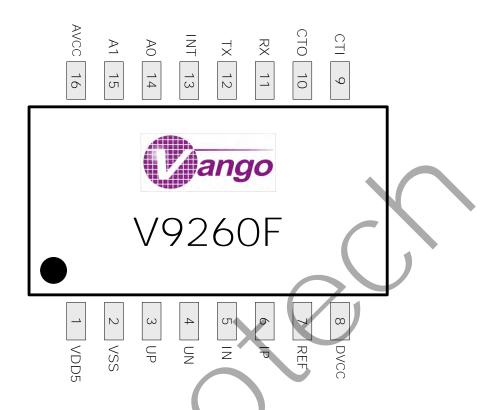
Specifications

All maximum/minimum specifications apply over the entire recommended operation range (T = -40 °C \sim +85 °C, VDD5 = 5 V \pm 10%) unless otherwise noted. All typical specifications are at TA = 25 °C, VDD5 = 5 V, unless otherwise noted.

Parameter	Min.	Тур.	Max.	Unit	Remark
Analog Input					
Maximum Signal Level			±200	mV	Peak value
ADC					
DC Offset			10	mV	
Resolution		23		Bit	Sign bit is included.
Bandwidth (-3dB)		1.6		kHz	
On-chip Reference				. (/1
Reference Error	-18		18	mV	
Power Supply Rejection Ratio		80		dВ	
Temperature Coefficient		10	50	ppm/°C	
Output Voltage		1.188		V	
Power Supply		-/	ノ)		
VDD5	3.0	5	5.5	V	
3.3V LDO (AVCC)) /				
Voltage	2.8	3.3	3.5	V	VDD5≥4V, I _{L33} =16mA
Current			30	mA	
Power-Down Detection Threshold		2.8		V	Error: ±5%
Digital Power Supply (D\	/CC)				
					Programmable
Voltage		1.8		V	Error: ±10%
Current			35	mA	
POR Detection Threshold		1.45		V	Error: ±10%
Pin "CTI"/"CTO"		1	1		•

Parameter	Min.	Тур.	Max.	Unit	Remark
		3.2768			
Crystal Frequency		6.5536		MHz	
	30	0.000	100	Ω	For 6.5536-MHz crystal
Equivalent Series Resistance (ESR)					
, ,	30		200	Ω	For 3.2768-MHz crystal
Phase Error Between Cha	nnels				
PF = 0.8 Capacitive		±0.05		Degree	
PF = 0.5 Inductive		±0.05		Degree	
Total Active Energy Metering Error		0.1		%	Dynamic Range 5000:1 @ 25°C
Total Active Energy Metering Bandwidth		1.6		kHz	
Total Reactive Energy Metering Error		0.1		%	Dynamic Range 3000:1 @ 25°C
Total Reactive Energy Metering Bandwidth		1.6		kHz	
Fundamental Active Energy Metering Error		0.1		%	Dynamic Range 5000:1 @ 25°C
Fundamental Active Energy Metering Bandwidth		65		Hz	
Fundamental Reactive Energy Metering Error		0.1		%	Dynamic Range 3000:1 @ 25°C
Fundamental Reactive Energy Metering Bandwidth		65		Hz	
Total VRMS/s Metering Error		1		%	Dynamic Range 1000:1 @ 25°C
Total VRMS Metering Bandwidth		1.6		kHz	
Fundamental VRMS/s Metering Error		1		%	Dynamic Range 5000:1 @ 25°C
Fundamental VRMS Metering Bandwidth		65		Hz	
Total IRMS/s Metering Error		1		%	Dynamic Range 1000:1 @ 25°C
Total IRMS Metering		1.6		kHz	

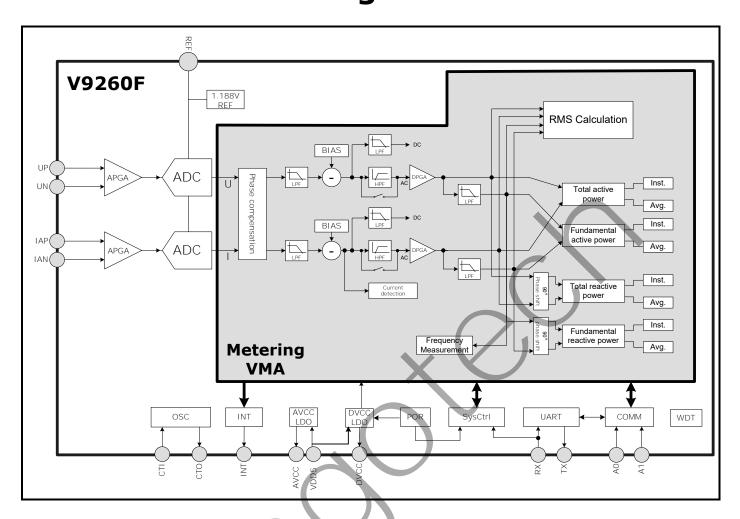
					V9200F Datasileet
Parameter	Min.	Тур.	Max.	Unit	Remark
Bandwidth					
Fundamental IRMS/s Metering Error		1		%	Dynamic Range 5000:1 @ 25°C
Fundamental IRMS Metering Bandwidth		65		Hz	
Current Detection Cycle	15	25	30	ms	
Frequency Measurement					
Range	40		70	Hz	
Error		0.01		Hz	
Logic Output	TX/INT				
Output High Voltage, Voн	1.7			V	
Isource			8	mA	Load of 8-mA current in a short time may not damage the chip, but
Output Low Voltage, Vol			0.7	V	load of 8-mA for a long time may
Isink			8	mA	damage the chip.
Logic Input	RX/A0,	/A1			,
Input High Voltage, VINH	2.0		3.6	V	
Input Low Voltage, VINL	-0.3		0.7	V	
Input Current, I _{IN}			1	μA	
Input Capacitance, C _{IN}			20	pF	
Baud Rate	1200	2400	38400	bps	


Absolute Maximum Ratings

Operating circumstance exceeding **"Absolute Maximum Ratings"** may cause permanent damage to the device.

Parameters	Min.	Тур.	Max.	Unit	Description
Power Supply (VDD5)	-0.3		+8.0	V	To ground
Digital Power Supply (DVCC)	-0.3		+1.98	V	To ground
Analog Power Supply (AVCC)	-0.3		+3.6	V	To ground
Analog Input Voltage (IN/IP/UN/UP)	-0.3		+3.3	V	To ground
Operating Temperature	-40		+85	°C)
Storage Temperature	-55		+150	°C	

Pin Descriptions


No.	Mnemonic	Туре	Description
1	VDD5	Power	5-V power supply This pin must be decoupled to a \geq 0.1- μ F capacitor.
2	VSS	Ground	Analog/Digital ground
3	UP	Input	Positive input for Voltage Channel
4	UN	Input	Negative input for Voltage Channel
5	IN	Input	Negative input for Current Channel
6	IP	Input	Positive input for Current Channel
7	REF	Input/Output	On-chip reference This pin must be connected to a 1-µF capacitor, and then grounded.
8	DVCC	Power	Digital power output This pin must be connected to a parallel circuit combined by a \geq 4.7- μ F capacitor and 0.1- μ F capacitor, and then grounded.

			V9200F DataSileet
No.	Mnemonic	Туре	Description
9	СТІ	Input	Connect a 6.5536-MHz crystal around both pins.
10	СТО	Output	There is fixed load capacitance of 12 pF in the oscillation circuit. The requirement of the crystal oscillator: the load capacitance of crystal oscillator is 12PF, ESR<100 ohm.
11	RX	Input	Receiver data input Hold low logic for at least 64 ms to reset the chip. In the Sleep Mode, a low-to-high transition (Holding low and high for at least 250 µs respectively) on this pin can wake up the chip to go to the Current Detection Mode.
12	TX	Output	Transmitter data output
13	INT	Output	Interrupt output, high active This pin outputs the system control register self-checking interrupt and configuration verification interrupt all the time. This pin can output the zero-crossing interrupt, current detection interrupt, power-down interrupt, WDT overflow interrupt, or external crystal failure interrupt, when the interrupt output is enabled.
14	AO	Input	Both pins are used to set the chip address for the master MCU to select
15	A1	Input	the slave for communication, when more than one chips are used.
16	AVCC	Output	3.3-V AVCCLDO output It should be connected to a parallel circuit combined by a \geqslant 4.7- μ F decouple capacitor and a 0.1- μ F capacitor, and then connected to the ground.

Functional Block Diagram

Table of Contents

Revisio	on History	2
Featur	es	3
Specifi	ications	4
Absolu	ıte Maximum Ratings	7
Pin Des	scriptions	8
Functio	onal Block Diagram	0
Table o	of Contents	1
Figure	List	3
Table L	List	.)4
1. R	Reset	,6
1.1.	Power-On Reset (POR)	
1.2.	RX Reset	
1.3.		7
1.4.	. WDT Overflow Reset	8
1.5.	9	
2. C	Clock	
2.1.		
2.2.		
2.3.		14
2.4.		
	Operation Mode	
3.1.		20
3.2.	. Sleep Mode Current Detection Mode	
3.4.		
4. P	Power Supply Monitoring Circuit	
4.1. 4.2.	3	
4.3.		
	Bandgap Circuit	
6. U 6.1.	JART Interface Data Byte	
6.2.	•	
6.3.	9	
	6.3.1. Write Operation	
	6.3.2. Read Operation	

	6	.3.3. Broadcast Communication	37
7.	RM	1S & Power Measurement	39
	7.1.	Metering Clock (MEACLK)	39
	7.2.	Analog Input	39
	7.3.	Analog-to-Digital Conversion	41
	7.4.	Phase Compensation	42
	7.5.	Digital Input and DC Removement	44
	7.6.	RMS Calculation	45
	7.7.	Power Calculation	47
	7.8.	Line Frequency Measurement	49
	7.9.	Calibration	50
	7	7.9.1. Registers for Meter Calibration	
	7	7.9.2. Equations for Calibration	51
	7	'.9.3. Calibration Steps	53
8.	Int	terrupt	55
	8.1.	System Control Register Self-Checking Interrupt	
	8.2.	Configuration Verification Interrupt	56
	8.3.		
	8.4.	Current Detection Interrupt	58
	8.5.	Registers	59
9.	Re	gisters	
-	9.1.	Analog Control Registers	63
	9.2.	System Control Register	
	9.3.	Metering Control Registers	72
	9.4.	Data Registers	
	9.5.	Registers for Calibration	
	9.6.	Checksum Register	
	•	Allina Dimanatana	0.4

Figure List

Figure 1-1 Timing of POR	6
Figure 1-2 Timing of RX Reset	7
Figure 1-3 Timing of Global Software Reset	8
Figure 1-4 WDT Overflow Reset (Reset interval is set to 32 s.)	9
Figure 2-1 Clock Generation	12
Figure 3-1 Operating Modes	20
Figure 4-1 Power Supply Architecture	
Figure 4-2 Power-Down Interrupt	28
Figure 6-1 Structure of an 11-Bit Data Byte	32
Figure 6-2 Command Frame for Read/Write/Broadcast Operation	33
Figure 6-3 Timing of UART Communication	34
Figure 7-1 Signal Processing in Specific Metering Architecture	39
Figure 7-2 Analog Input of Current Channels	40
Figure 7-3 Analog Input of Voltage Channels	40
Figure 7-4 Phase Compensation	43
Figure 7-5 Digital Input and DC Removement (Current Signal is Taken as an Example.)	44
Figure 7-6 Total/Fundamental RMS Calculation	46
Figure 7-7 Active/Reactive Power Calculation	48
Figure 8-1 Zero-Crossing Interrupt	
Figure 8-2 Signal Processing for Current Detection	58
Figure 8-3 Current Detection Interrupt	50

Table List

Table 1-1 Theoretical Reset Interval and Recommended Interval to Feed Dog	9
Table 1-2 Reset Related Registers	10
Table 2-1 Clock Generation Related Registers	15
Table 3-1 States of Functional Units in Default State	19
Table 3-2 States of Functional Units in Metering Mode	21
Table 3-3 States of Functional Units in Sleep Mode	22
Table 3-4 States of Functional Units in Current Detection Mode	23
Table 3-5 Factors Affecting Power Dissipation	24
Table 3-6 Effects on ADCs Power Dissipation	25
Table 3-7 Effect on Vango Metering Architecture Power Dissipation	25
Table 3-8 Power Dissipation in Each Operating Mode	
Table 4-1 DVCCLDO Output Voltage Adjustment	28
Table 5-1 Configuration for Bandgap Circuit	30
Table 6-1 Baud Rate Configuration	32
Table 6-2 UART Communication Timing Parameters	34
Table 6-3 Structure of Data Byte (B7:B0) From Master MCU to V9260F on Write Operation	35
Table 6-4 Structure of Data Byte (B7:B0) From V9260F to Master MCU on Write Operation	35
Table 6-5 Structure of Data Byte (B7:B0) From Master MCU to V9260F on Read Operation.	36
Table 6-6 Structure of Data Byte (B7:B0) From V9260F to Master MCU on Read Operation.	36
Table 6-7 Structure of Data Byte (B7:B0) From Master MCU to V9260F on Broadcast Operat	
Table 7-1 Analog PGA Configuration	
Table 7-2 Enable/Disable ADCs of Each Channel	
Table 7-3 Configuring ADCCLK	
Table 7-4 Registers for phase compensation	42
Table 7-5 Resolution and correction range at different frequencies	43
Table 7-6 Enable/Disable Digital Inputs	44
Table 7-7 DPGA Gain Selection for Digital Signals	45
Table 7-8 Bandpass Filter Parameters	50
Table 7-9 Registers for Meter Calibration	50

Table 8-1 Registers for Configuration Verification56
Table 8-2 Interrupt Output Enable Bits59
Table 8-3 Interrupt Flag Bits60
Table 9-1 Analog Control Register 0 (ANCtrl0, 0x0185)63
Table 9-2 Analog Control Register 2 (ANCtrl2, 0x0187)66
Table 9-3 System Control Register (0x0180, SysCtrl)68
Table 9-4 Metering Control Register 0 (0x0183, MTPARA0)73
Table 9-5 Metering Control Register 1 (0x0184, MTPARA1)74
Table 9-6 Registers for DC Component (R/W)76
Table 9-7 Registers for Line Frequency (R)76
Table 9-8 Registers for RMS Values of Total/Fundamental Signals (R/W)77
Table 9-9 Total/Fundamental Active/Reactive Power Registers (R/W)79
Table 9-10 Registers for Presetting Bias for Direct Current/Voltage81
Table 9-11 Registers for Calibrating Voltage/Current RMS (R/W)81
Table 9-12 Registers for Calibrating Active/Reactive Power (R/W)81
Table 9-13 Threshold Register82
Table 9-14 Register for Bandpass Filter Coefficient Configuration (0x0125, BPFPARA, R/W)83
Table 9-15 Checksum Register (0x0133, CKSUM, R/W)83

1.Reset

In V9260F, the chip will be reset to the Default State, when a POR reset, RX reset, or global software reset occurs; and the UART serial interface will be reset when the WDT overflow event occurs.

1.1. Power-On Reset (POR)

In V9260F, the internal power-on reset circuit supervises the output voltage on the pin "**DVCC"** all the time. When the output voltage is lower than 1.45 V, the reset signal will be generated and forces the chip into the reset state. When the output voltage is higher than 1.45 V, the reset signal will be released and the chip will go to the Default State in 500 μ s.

When a POR event occurs, the bit "RSTSRC" (bit[26:24] of SysCtrl, 0x0180) will be reset to "0b001".

In the reset state, the master MCU and the Vango metering architecture cannot access RAM. When the chip exits from the reset state, RAM will implement the self-checking in about 1.25 ms. If there is no error occurring, RAM can be accessed.

In the reset state, the UART serial interface is idle. The interface starts to run immediately once the chip exits from the reset state.

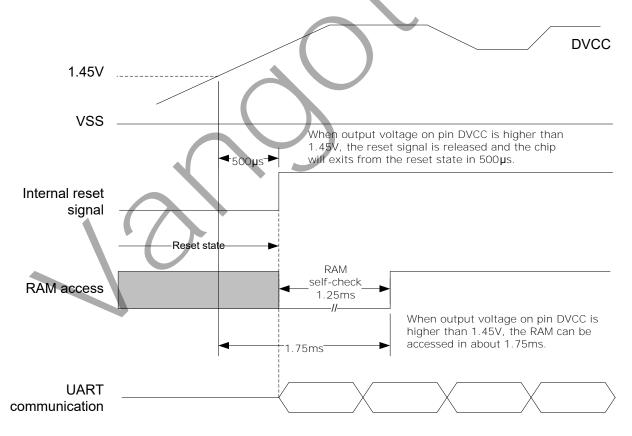
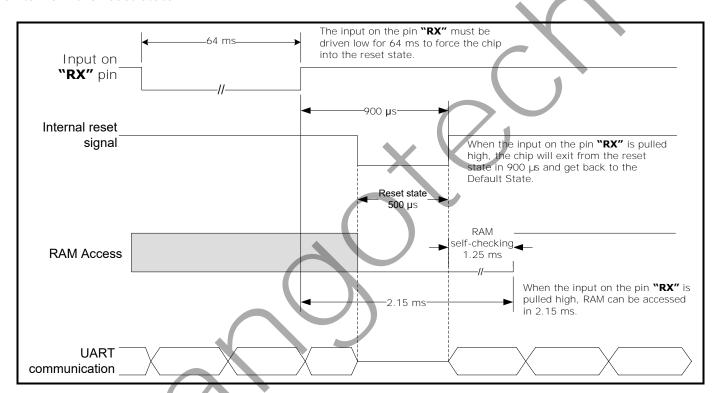


Figure 1-1 Timing of POR


1.2. RX Reset

The input on the pin "RX" must be driven low for at least 64 ms to force the chip into the reset state. Pull the pin "RX" to the logic high, and 900 μ s later the chip will exit from the reset state and get back to the Default State.

When a RX reset occurs, the bit "RSTSRC" (bit[26:24] of SysCtrl, 0x0180) will be reset to "0b011".

In the reset state, the master MCU and the Vango metering architecture cannot access RAM. When the chip exits from the reset state, RAM will implement the self-checking in about 1.25 ms. If there is no error occurring, RAM can be accessed.

In the reset state, the UART serial interface is idle. The interface starts to run immediately once the chip exits from the reset state.

Figure 1-2 Timing of RX Reset

1.3. Global Software Reset

In V9260F, writing of "0x4572BEAF" in the register "SFTRST" (0x01BF) can force the chip into the reset state, and the chip will exit and get back to the Default State in 650 μs .

When a global software reset occurs, the bit "RSTSRC" (bit[26: 24] of SysCtrl, 0x0180) will be reset to "0b100".

In the reset state, the master MCU and the Vango metering architecture cannot access RAM. When the chip exits from the reset state, RAM will implement the self-checking in about 1.25 ms. If there is no error occurring, RAM can be accessed.

In the reset state, the UART serial interface is idle. The interface starts to run immediately once the chip

exits from the reset state.

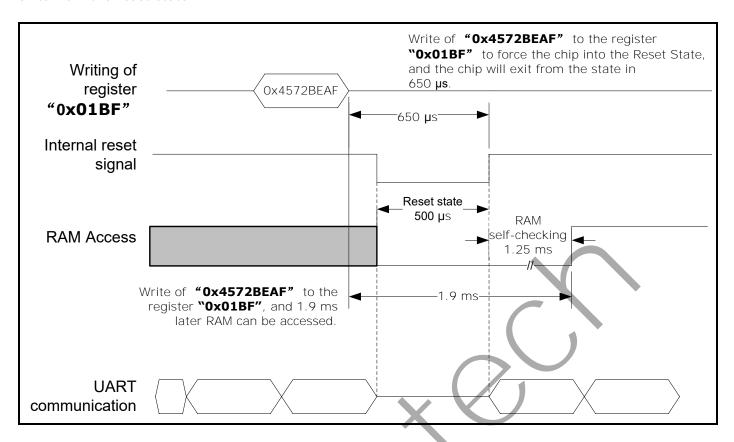


Figure 1-3 Timing of Global Software Reset

1.4. WDT Overflow Reset

V9260F integrates a 23-bit watchdog timer (WDT) counting pulses of the 32-kHz RC clock (CLK3). The 32-kHz RC oscillator works all the time when the chip is powered on, so WDT keeps on counting the pulses. If WDT is not cleared at the preset interval (Feed dog), the WDT counts will overflow, a WDT overflow reset signal will be generated, and the baud rate of UART interface will be reset to 2400 bps.

Note:

Please note that the baud rate of UART interface will be reset to 2400 bps when a WDT overflow event occurs, but the configuration of bits **"CKUDIV"** (bit[4:2] of SysCtrl, 0x0180) holds on.

The WDT counts will be cleared when a POR reset event occurs, the pin "RX" receives a correct command frame for the write, read, or broadcast operation, or the chip is woken up from the Sleep Mode.

Users can configure the interval (T) for the WDT overflow reset via "bit[17:15]" of register "MTPARAO" (0x0183) to lower the power dissipation or speed up the debugging. The reset interval is affected by the "CLK3" frequency that has a drift of $\pm 50\%$. In practice, 32768 Hz is taken as the "CLK3" frequency for the interval calculation, but to protect the UART serial interface from being reset, it is recommended to feed dog before at an interval of $\frac{T}{2}$ to avoid the WDT overflow reset.

Table 1-1 Theoretical Reset Interval and Recommended Interval to Feed Dog

Register	Bit	Configuration	Reset Interval (T)	Recommended Interval to Feed Dog $(\frac{1}{2})$
		000	2 s	1 s
		001	4 s	2 s
		010	8 s	4 s
0x0183	Bit[17:15]	011	16 s	8 s
MTPARA0	WDT	100	32 s	16 s
		101	64 s	32 s
		110	128 s	64 s
		111	256 s	128 s

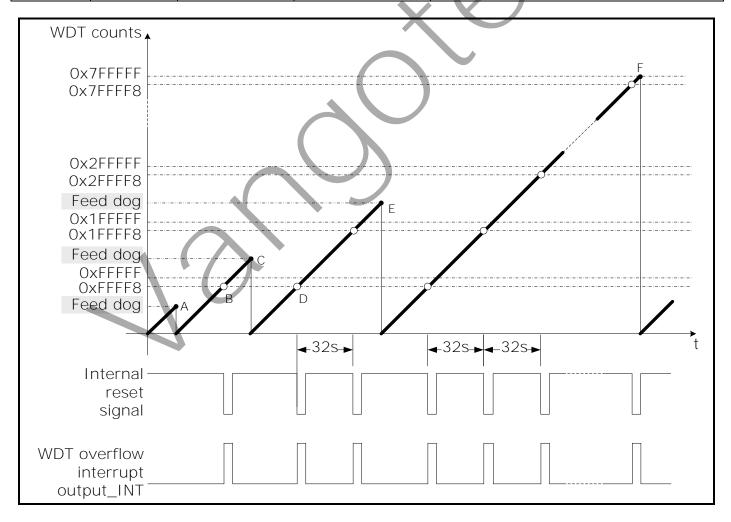


Figure 1-4 WDT Overflow Reset (Reset interval is set to 32 s.)

As shown in

Figure 1-4,

If the counts are cleared before the timer counts to "OxFFFF8" (As "A" in

- Figure 1-4), WDT will count from '0' again. "16 s" is recommended as the interval to feed dog.
- If WDT keeps on counting over "OxFFFF8", a reset signal will be generated and hold for 8 CLK3 cycles till WDT counts to "OxFFFFF". After the reset, WDT will continue to count, and then,

WDT will count from **'0'** again when the counts are cleared before the timer counts to **"0x1FFFF8"** (As **"C"** in

- ✓ Figure 1-4).
- ✓ WDT will keep on counting until it is cleared or it counts to "0x7FFFFF" and then are cleared automatically. The UART interface will be reset every 32 s until the counts are cleared.

Modify the reset interval, and it will not be activated until the dog is fed.

When WDT overflow reset occurs, the bit "RSTSRC" (bit[26:24] of SysCtrl, 0x0180) is reset to "0b000", and an interrupt is triggered. When the WDT interrupt output is enabled (IEWDT, bit5 of MTPARAO, 0x0183, is set to '1'), the pin "INT" will output high logic for 8 CLK3 cycles, and then low logic automatically.

1.5. Registers

Table 1-2 Reset Related Registers

	Reset Relate	a regional
Register	Bit	Description
		Flag bits to indicate the reset source
		Bit26 Bit25 Bit24 Description
0x0180	Bit[26: 24]	0 0 1 A POR event occurred.
SysCtrl	RSTSRC	0 0 0 A WDT overflow event occurred.
		0 1 1 An RX reset event occurred.
*		0 1 0 Reserved
		1 0 0 A global software reset occurred.
		To set the interval for WDT overflow reset (T)
		"T" is calculated via equation $T = \frac{2^{WDT}}{f_{CLK3}}$, of which,
0x0183	Bit[17:15]	• WDT is the value of bit[17:15].
MTPARAO	WDT	000: 16; 001: 17; 010: 18; 011: 19; 100: 20; 101: 21; 110: 22; 111: 23.
		• f _{CLK3} is the actual frequency of "CLK3". In practice, 32768 Hz is taken to calculate the interval (T). But there is an error of $\pm 50\%$ of the "CLK3"
della.		frequency, so it is recommended to feed dog at an interval of $\frac{T}{2}$ to prevent

Register	Bit	Description			
		the baud rate of UART serial interface from being reset by the WDT overflow.			
	Bit5 IEWDT	To enable WDT overflow interrupt output 1: Enable 0: Mask			
Ox01BF, SFTRST Software Reset Control Register		Readable and writable, in the form of 32-bit 2' complement Write "0x4572BEAF" to the register to reset the system			

2.Clock

The on-chip RC oscillator circuits and the crystal oscillation circuit provide clocks for V9260F:

- On-chip crystal oscillation circuit: An external 6.5536-MHz or 3.2768-MHz crystal connects to the pins "CTI" and "CTO" to generate the clock (CLK1) that works as the clock source for the Vango metering architecture, ADCs, and UART serial interface. After a POR, RX reset, or global software reset occurs, this oscillation circuit starts to run.
- On-chip 3.2-MHz (±30%) RC oscillator generates the clock (CLK2) that works as an optional clock source for the Vango metering architecture, ADCs, and UART serial interface. This circuit can be disabled. After a POR, RX reset, or global software reset occurs, this circuit stops running.
- On-chip 32-kHz (±50%) RC oscillator generates the clock (CLK3) that works as the clock source for the watchdog timer, wake-up circuit, internal crystal supervising and stimulating circuit, and the filters for some key IO ports. This circuit keeps on working until the system is powered off.

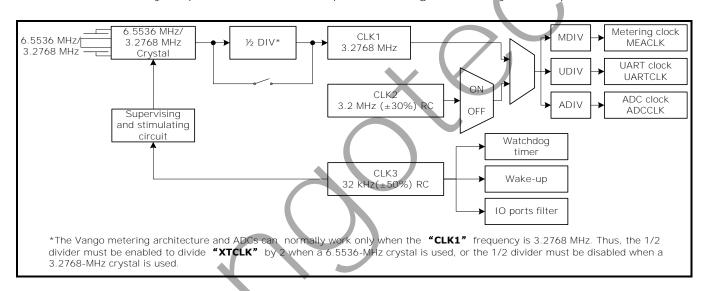


Figure 2-1 Clock Generation

2.1. Crystal Oscillation Circuit

In the on-chip crystal oscillation circuit, there is fixed load capacitance (CL) of 12 pF. In applications, users can adjust the capacitance via configuring bits "XCSEL<1:0>" (bit[17:16] of ANCtrl2, 0x0187) or connecting additional capacitors around pins "CTI" and "CTO" to adjust the oscillation frequency.

When powered on, the crystal oscillation circuit starts to run to generate a clock, "XTCLK", to be the source of clock "CLK1". The "CLK1" frequency is divided by different clock scalars to generate clocks for the Vango metering architecture (MEACLK), ADCs (ADCCLK), and UART interface (UARTCLK). The master MCU can configure the bit "XTALPD" (bit20 of ANCtrl0, 0x0185) to disable the oscillation circuit. When the oscillation circuit stops working, the on-chip 3.2-MHz (The deviation is within ±30% from chip to chip for mass production. The temperature deviation from -40~85 degree for each specific chip is less than 3%.) RC oscillator will start to run automatically to generate clock "CLK2" to replace "CLK1" to provide clock pulses for the Vango metering architecture, ADCs, and UART interface. However, please be noted that the "CLK2" frequency is not accurate enough for the UART communication.

Both 3.2768-MHz and 6.5536-MHz crystals can be connected around the pins "CTI" and "CTO". Thus, the "XTCLK" frequency can be 3.2768 MHz or 6.5536 MHz. However, the Vango metering architecture and ADCs can work normally only when the "CLK1" frequency is 3.2768 MHz. Thus, the 1/2 divider must be enabled when a 6.5536-MHz crystal is used; otherwise, it must be disabled. Users can enable or disable this divider via configuring the bit "XTAL3P2M" (bit19 of ANCtIr0, 0x0185).

Please be noted that the 1/2 divider is enabled after a POR, RX reset, or global software reset occurs. Thus, the UART interface will communicate at a half of the expected baud rate when the 3.2768-MHz crystal is used. Users must disable the divider via the bit "XTAL3P2M" (bit19 of ANCtrl0, 0x0185).

Users can adjust the clock frequency for ADCs and metering architecture via bits "ADCCLKSEL<1:0>" (bit[17:16] of ANCtrl0, 0x0185) and "CKMDIV" (bit1 of SysCtrl, 0x0180), and the baud rate for the UART communication via bits "CKUDIV" (bit[4:2] of SysCtrl, 0x0180).

The typical power dissipation of the crystal oscillation circuit is 130 μ A. When a 3.2768-MHz crystal is used, users must set the bit "XTALLP" to '1' to lower the power dissipation to a half. When a 6.5536-MHz crystal is used, setting this bit has no effect on the power dissipation of this circuit. When a crystal of higher than 60- Ω ESR (Equivalent Serial Resistance) is used, users must set the bit "XRSEL<0>" (bit18 of ANCtrl2, 0x0187) to '1' to improve the driving ability of the oscillation circuit to ensure the crystal to work, which needs additional 55- μ A load current.

In the Metering Mode, some errors can stop the oscillation circuit. Thus, an internal supervising and stimulating circuit, which is sourced by "CLK3", is designed to monitor the crystal all the time. When the crystal stops oscillating, this circuit will generate a 1-ms wide pulse every second to stimulate the crystal to restore oscillating. The stimulating function of this circuit is disabled by default. Users can set the bit "XRSTEN" (bit21 of ANCtrl0, 0x0185) to '1' to enable this function.

In the Sleep Mode, this crystal oscillation circuit stops working, and it will not get back to work automatically even though the system is woken up from the Sleep Mode to get to the Current Detection Mode.

When the crystal stops working, an interrupt signal is generated and the flag bit "HSEFAIL" (bit27 of SysCtrl, 0x0180) is set to '1', which will be cleared when the crystal restores to work. If the external crystal failure interrupt output is enabled (IEHSE, bit4 of MTPARAO, is set to '1'), the pin "INT" will output high logic and hold the state till the crystal works again.

Please be noted that the "CLK2" frequency is not accurate enough for the UART communication, so the master MCU cannot read the actual state of the flag bit "HSEFAIL".

2.2. 3.2-MHz RC Oscillator

In V9260F, an on-chip 3.2-MHz RC oscillator is designed to generate a 3.2768-MHz (The deviation is within $\pm 30\%$ from chip to chip for mass production. The temperature deviation from -40~85 degree for each specific chip is less than 3%.) clock, "CLK2", to work as an optional clock source for the Vango metering architecture, ADCs, and UART serial interface. But the "CLK2" frequency is not accurate enough for the UART communication. In the Metering Mode, this circuit will start to run automatically when the crystal stops working, and it will stop running automatically when the crystal restores to work.

After a POR, RX reset, or global software reset occurs, this circuit stops running. To enable this circuit, it is mandatory to enable the Bandgap and global biasing current circuits firstly which provides the biasing current and reference voltage for the 3.2-MHz RC oscillator.

In the Sleep Mode, this circuit stops running, and it will get back to work automatically when the chip is woken up from the Sleep Mode to go to the Current Detection Mode.

2.3. 32-kHz RC Oscillator

The on-chip 32-kHz RC oscillator can generate a 32-kHz ($\pm 50\%$) RC clock (CLK3) to drive the watchdog timer, wake-up circuit, internal crystal supervising and stimulating circuit, and the filters for some key IO ports. This oscillator cannot be disabled until the system is powered off.

2.4. Registers

Table 2-1 Clock Generation Related Registers

Register	Bit	Default	Description
	Bit29 PDRCCLK	N/A	Clear this bit to enable the 3.2-MHz RC Clock. It is mandatory to enable the Bandgap circuit and biasing circuit firstly. The value of the bit is uncertain when the system is reset.
			In the Sleep Mode, this bit is set to '1' automatically. In the Current Detection Mode, this bit is cleared automatically.
			In the Metering Mode, when the chip operates with full functions, it is recommended to disable this circuit (Set the bit to '1').
Ox0185 ANCtrIO	Bit28 BIASPDN	0	Set this bit to '1' to enable the biasing circuit to provide the global biasing current for ADCs and the 3.2-MHz RC oscillator. Therefore, in the Metering Mode, when the chip operates with full functions, this bit must be set to '1' before enabling ADCs and the 3.2-MHz RC oscillator. By default the biasing circuit is disabled. In the Sleep Mode, this bit is cleared automatically. In the Current Detection Mode, this bit is set to '1' automatically. In the Metering Mode, this biasing circuit must be enabled.
	Bit27 BGPPDN	0	Set this bit to '1' to enable the Bandgap circuit to provide ADCs and the 3.2-MHz RC oscillator with the reference voltage and biasing voltage. Therefore, in the Metering Mode, when the chip operates with full functions, this bit must be set to '1' before enabling ADCs and the 3.2-MHz RC oscillator. By default the Bandgap circuit is disabled. In the Sleep Mode, this bit is cleared automatically. In the Current Detection Mode, this bit is set to '1' automatically. In the Metering Mode, this Bandgap circuit must be enabled.
	Bit21 XRSTEN	0	Set this bit to '1' to enable the function of stimulating the external crystal when it stops running. By default this function is disabled.
			In the Metering Mode, when the chip operates with full functions, it is recommended to enable this function for the best performance.

	v9260F Datasneet			
Register	Bit	Default	Description	
	Bit20 XTALPD	0	Set this bit to '1' to disable the crystal oscillation circuit. By default this circuit is enabled. In the Metering Mode, when the chip operates with full functions, this bit will be set to '1' when the external crystal stops running, but it will be cleared automatically when the crystal restores running. Both in the Sleep Mode and in the Current Detection Mode, this bit is set to '1' automatically.	
	Bit19 XTAL3P2M	0	When a 3.2768-MHz external crystal is used, this bit must be set to '1' to disable the 1/2 divider in the crystal oscillation circuit. When a 6.5536-MHz crystal is used, this bit must be cleared to enable the 1/2 divider.	
	Bit18 XTALLP	0	When a 3.2768-MHz crystal is used, it is mandatory to set this bit to '1' to lower the power dissipation of the crystal oscillation circuit to a half. When a 6.5536-MHz crystal is used, this bit must hold its default value.	
	Bit[17:16] ADCLKSEL<1:0>		To select the sampling frequency of the oversampling ADC (ADC clock, ADCCLK). The sampling frequency of ADCs must be a quarter or one eighth of the metering clock (MEACLK) frequency when the chip operates with full functions in the Metering Mode. O0: 819.2 kHz O1: 409.6 kHz 10: 204.8 kHz In the Current Detection Mode, these bits must be set to "Ob10" to lower the power dissipation. When the chip operates with full functions in the Metering Mode, their default values are recommended to be used for the best	

Bit	Default	Description To adjust the 3.2-MHz RC clock cycle
		To adjust the 3.2-MHz RC clock cycle
		The resolution is 1% per LSB. When these bits are in their default state, no adjustment is applied.
Bit[29: 24] RCTRIM<5:0>	0	From "0b000000" to "0b100000", the RC clock cycle is decreased by 1% per LSB; from "0b100001" to "0b111111", the RC clock cycle is increased by 1% per LSB.
		When the chip operates with full functions in the Metering Mode, it is recommended to hold their default values for the best performance.
Bit19		To adjust the negative resistance of the crystal oscillator
XRSEL<1>	0	It is not recommended to set this bit to '1', which will lead to additional 18-µA load current.
Bit18 XRSEL<0>	0	To adjust the negative resistance of the crystal oscillator When the equivalent series resistance of the crystal is higher than 60 Ω , it is recommended to set this bit to '1', which will lead to additional 55- μA load current.
Bit[17:16] XCSEL<1:0>	0	To adjust the load capacitance of the crystal oscillator By default the load capacitance is 12 pF. 00: No adjustment 01: +2 pF 10: +4 pF 11: +6 pF
Bit4 IEHSE	0	To enable external crystal failure interrupt output 1: Enable 0: Mask
	Bit18 XRSEL<0> Bit[17:16] XCSEL<1:0>	Bit18 XRSEL<0> Bit[17:16] XCSEL<1:0> Ditable 10

V9200F Datasileet			
Register	Bit	Default	Description
			External crystal failure interrupt flag bit
0x0180 SysCtrl	Bit27 HSEFAIL	0	When the external crystal stops running, this bit will be set bit and hold the state till the crystal starts to oscillate again.
			When the crystal stops running, the UART serial interface is sourced by the 3.2-MHz RC clock (CLK2), which is not accurate enough for the UART communication, so the master MCU cannot read the value of this bit to detect the state of the crystal. In this circumstance, users should enable the external crystal failure interrupt output on the pin "INT" to help to detect the state of the crystal.
	Bit[4:2] CKUDIV	1	To set the baud rate for the UART communication, in unit of bps. 000: 1200; 001: 2400; 010: 4800; 011: 9600; 100: 19200; 101: 38400; 110/111: 1200. Note: When a 3.2768-MHz crystal is used, after a power-on reset (POR), RX reset, or global software reset occurs, the actual baud rate is a half of the desired baud rate. In this case, users must set the bit "XTAL3P2M" (bit19 of ANCtrl0, 0x0185) to '1' to disable the 1/2 divider to generate 3.2768-MHz CLK1 to source the UART interface. After the WDT overflow reset, the baud rate is reset to 2400 bps, but these bits holds their
	Bit1 CKMDIV	0	To select the clock frequency for the Vango metering architecture (MEACLK) 1: 819.2 kHz 0: 3.2768 MHz
	BitO SLEEP	0	Set this bit to '1' to disable "CLK1" and "CLK2" and force the system to enter the Sleep Mode

3. Operation Mode

When V9260F is powered off, the chip stops working and it will go to the Default State when being powered on.

When the chip is working, it can be reset to the Default State when a POR, RX reset, or global software reset occurs. Table 3-1 lists the states of functional units in V9260F in the Default State.

In the Default State, the typical load current is 500 μ A. Some easy configurations can drive the chip to work in the Metering Mode or Sleep Mode.

Table 3-1 States of Functional Units in Default State

Functional Unit	State
RAM	Cleared to all zeros
Crystal oscillation circuit	Enabled
3.2-MHz RC oscillator	Disabled
32-kHz RC oscillator	Enabled
Bandgap circuit	Disabled
Biasing circuit	Disabled
Power supply monitoring circuit	Enabled
POR circuit	Enabled
LDO	Enabled
ADC	Disabled
Vango metering architecture	Enabled, but for configuration verification only
Interrupt management circuits	Enabled. Output system control register self-checking interrupt and configuration verification interrupt only
UART serial interface	Enabled. When a 3.2768-MHz crystal is used, the actual baud rate will be a half of desired baud rate. Users must set the "XTAL3P2M" bit (Bit19, 0X0185,ANCtrl0) to '1' to disable the 1/2 divider to make the UART interface work in the expected baud rate.
WDT	Enabled

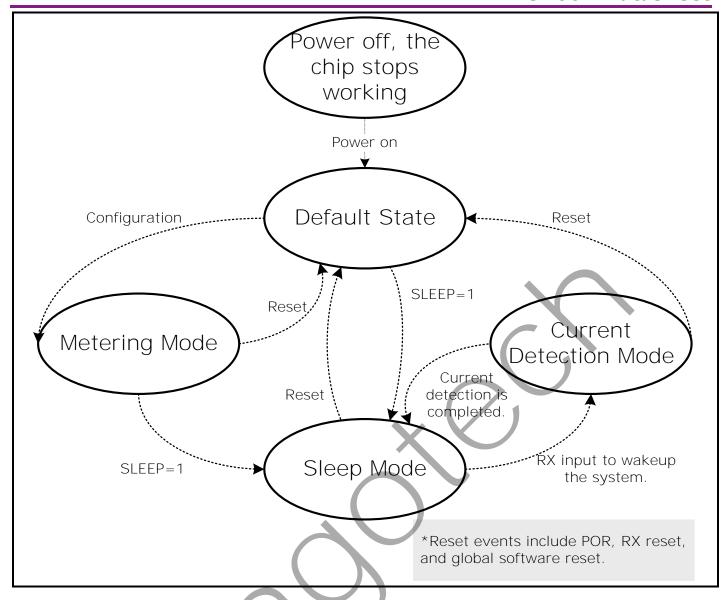


Figure 3-1 Operating Modes

3.1. Metering Mode

In the Default State, V9260F will enter the Metering Mode via some easy configurations:

- To select "CLK1" to source the clocks of the Vango metering architecture (MEACLK), UART serial interface (UARTCLK), and ADCs (ADCCLK)
- To enable or disable ADCs, to configure the sampling frequency to 819.2 kHz or 204.8 kHz, and to adjust the global biasing current to lower the power dissipation of ADCs
- To configure the MEACLK frequency to 3.2768 MHz or 819.2 kHz, which must be four or eight times of the ADCCLK frequency, and to configure the function of the Vango metering architecture
- To configure the baud rate of the UART serial interface through the "CKUDIV" bit (bit[4:2], SysCtrl, 0X0180)

In the Metering Mode, when a reset event, such as a POR, RX reset, or global software reset occurs, the chip will get back to the Default State.

Table 3-2 States of Functional Units in Metering Mode

Functional Unit	State
	Enabled by default
Crystal oscillation circuit	It is mandatory to set the bit "XRSTEN" to '1' to enable the function of stimulating the external crystal when it stops running.
3.2-MHz RC oscillator	It is recommended to disable this unit to lower the power dissipation. When the crystal oscillation circuit stops running, this unit will start to run automatically.
32-kHz RC oscillator	Enabled
Bandgap circuit	It is mandatory to enable this unit.
Biasing circuit	It is mandatory to enable this unit.
Power supply monitoring circuit	Enabled
POR circuit	Enabled
LDO	Enabled Configure the DVCCLDO output voltage to lower the power dissipation of the Vango metering architecture
ADC	Enable ADCs, configure the sampling frequency, and adjust the global biasing current to lower the power dissipation, to meet the application requirements
Vango metering architecture	It is mandatory to enable this unit, and configure its functions to meet the application requirements.
	Enabled
Interrupt management circuits	Output the system control register self-checking interrupt and configuration verification interrupt all the time, and output the desired interrupts to meet the application requirements
	Enabled
UART serial interface	Baud rate is configured to meet the application requirements.
	Enabled
WDT	Configure the interval for the WDT overflow reset to meet the application requirements

3.2. Sleep Mode

When V9260F is in the Default State or Metering Mode, set the bit "SLEEP" (bit0, SysCtrl, 0x0180) to '1' to enable the system to enter the Sleep Mode.

Table 3-3 States of Functional Units in Sleep Mode

Functional Units	State
Crystal oscillation circuit	Disabled
3.2-MHz RC oscillator	Disabled
32-kHz RC oscillator	Enabled
Bandgap circuit	Disabled automatically
Biasing circuit	Disabled automatically
Power supply monitoring circuit	Enabled
POR circuit	Enabled
LDO	Enabled
ADC	Disabled automatically
Vango metering architecture	Disabled automatically
Interrupt management circuits	It is recommended to mask all interrupt outputs before the Sleep Mode, except for the system control register self-checking interrupt, which outputs all the time.
UART serial interface	IDLE
WDT	Enabled Configure the interval for the WDT overflow reset to meet the application requirements

In the Sleep Mode, the clock generation circuits, except for the 32-kHz RC oscillator, stop working, so the Vango metering architecture and ADCs stop working, the UART interface is idle, but the interrupt management circuits keep working. In this mode, the pin "TX" outputs high logic, and the pin "INT" outputs interrupt pulses if some interrupt outputs are enabled. It is recommended to disable the interrupt output before entering the Sleep Mode, except for the system control register self-checking interrupt.

The typical load current in the Sleep Mode is 10 μ A.

In the Sleep Mode, a low-to-high transition (Holding low for 250 µs and then high for 250 µs) on the pin

"RX" can wake up the system to work in the Current Detection Mode. When a reset event, such as a POR, RX reset, or global software reset, occurs, the system will go to the Default State.

3.3. Current Detection Mode

In the Sleep Mode, a low-to-high transition (Holding low for 250 μ s and then high for 250 μ s) on the pin "RX" can wake up the system to work in the Current Detection Mode.

In the Current Detection Mode.

- The 3.2-MHz RC oscillator generates "CLK2" to source "MEACLK", "ADCCLK", and "UARTCLK".

 The RC oscillator will oscillate in 1 ms.
- The "MEACLK" frequency is fixed at 3.2768 MHz to ensure the current signal is sampled 256 times every cycle.
- Only the current channel ADC is enabled. To lower the power dissipation and speed up the detection, it is recommended to lower the sampling frequency to 204.8 kHz, lower the global biasing current by 66%, and decrease the DVCCLDO output voltage by 0.2 V. All these configurations can lower the power dissipation to 0.85 mA.

It takes no more than 30 ms to complete the current detection. When the detection is completed, the system will get back to the Sleep Mode automatically.

In the Current Detection Mode, all interrupt outputs, except for those of the system control register self-checking interrupt, configuration verification interrupt, and current detection interrupt, are masked.

Table 3-4 States of Functional Units in Current Detection Mode

Functional Units	State
Crystal oscillation circuit	Disabled
3.2-MHz RC oscillator	Enabled automatically
32-kHz RC oscillator	Enabled
Bandgap circuit	Enabled automatically
Biasing circuit	Enabled automatically It is recommended to lower the global biasing current by 66% to lower the power dissipation.
Power supply monitoring circuit	Enabled
POR circuit	Enabled

	V9200F Datasileet		
Functional Units	State		
	Enabled		
LDO	It is recommended to lower the DVCCLDO output voltage by 0.2 V to lower the power dissipation of the Vango metering architecture.		
ADC	Only current channel ADC is enabled. It is mandatory to lower the "ADCCLK" frequency to 204.8 kHz to accelerate the current detection when the global biasing current is lowered by 66%.		
Vango metering architecture	Enabled and configured to compute for the configuration verification and current detection only automatically		
	Enabled		
Interrupt management circuits	All interrupt outputs, except for those of the system control register self-checking interrupt, current detection interrupt, and configuration verification interrupt, are masked.		
UART serial interface	The "UARTCLK" frequency is not accurate enough for the UART communication.		
	Enabled		
WDT	Configure the interval for the WDT overflow reset to meet the application requirements		

3.4. Power Dissipation

The global power dissipation of V9260F is affected by the DVCCLDO output voltage, ADC sampling frequency (ADCCLK), metering clock frequency (MEACLK), and the global biasing current.

Table 3-5 Factors Affecting Power Dissipation

Functional Unit	Affected by				Load	
	DVCCLDO Output Voltage	ADCCLK	MEACLK	Global Biasing Current	Current (µA)	
Bandgap circuit	×	×	×	×	79	
Biasing circuit	×	×	×	×	69	

	Affected by				Load	
Functional Unit	DVCCLDO Output Voltage	ADCCLK	MEACLK	Global Biasing Current	Current (µA)	
Voltage channel ADC	×	•	×	•	-	
Current channel ADC	×	•	×	•	-	
Vango metering architecture	•	×	•	×	-	
Crystal oscillation circuit	×	×	X	×	130*	
3.2-MHz RC oscillator	×	×	×	×	40	

X: No effect on the power dissipation

•: Affect the power dissipation

*When a crystal of higher than $60-\Omega$ ESR is used, it is recommended to set the bit "XRSEL<0>" (bit18 of ANCtIr2, 0x0187) to '1' to improve the driving capability of the oscillation circuit. This configuration will lead to additional 55- μ A load current. When a 3.2768-MHz crystal is used, it is mandatory to set the bit "XTALLP" (bit18 of ANCtrl0, 0x0185) to '1' to lower its power dissipation to a half.

Table 3-6 Effects on ADCs Power Dissipation

Table 3-0 Effects of Abes Fower Dissipation				
Functional Unit	ADCCLK	Global Biasing Current Adjustment	Load Current (µA)	
Voltage channel ADC	819.2 kHz	0	289	
		-33%	215	
	204.8 kHz	-66%	113	
	819.2 kHz	0	420	
Current channel ADC		-33%	309	
	204.8 kHz	-66%	155	

Table 3-7 Effect on Vango Metering Architecture Power Dissipation

Functional Unit	MEACLK	DVCCLDO Output Voltage Adjustment (V)	Load Current (μA)
Vango metering	3.2768 MHz	0	720

architecture	-0.2	620
--------------	------	-----

The "MEACLK" frequency can affect the power dissipation of the Vango metering architecture. But lowering the "MEACLK" frequency will weaken the metering accuracy, and slow down the voltage and current RMS update. So in the Metering Mode, users should not adjust the "MEACLK" frequency to lower the power dissipation.

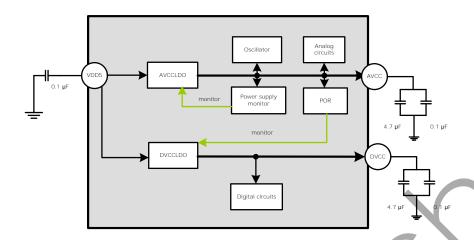

Table 3-8 lists the typical power dissipation in each operating mode.

Table 3-8 Power Dissipation in Each Operating Mode

Operating Mode		Metering Mode			Current	
		Configuration 1	Configuration Configuration 3		Detection Mode	Sleep Mode
	DVCCLDO Output Voltage Adjustment	0	0	0	-0.2 V	0
Test Condition	ADCCLK Frequency	819.2 kHz	819.2 kHz	204.8 kHz	204.8 kHz	-
	MEACLK Frequency	3.2768 MHz	3.2768 MHz	3.2768 MHz	3.2768 MHz	-
	Global Biasing Current Adjustment	-33%	-33%	-66%	-66%	0
	Crystal Oscillation Circuit	6.5536 MHz	3.2768 MHz	3.2768 MHz	Disabled	Disabled
	3.2-MHz RC Oscillator	Disabled	Disabled	Disabled	Enabled	Disabled
Туріс	al Load Current	1.45 mA	1.39 mA	1.14 mA	0.85 mA	10 μΑ

4. Power Supply

Figure 4-1 Power Supply Architecture

V9260F supports single power input of 5 V ($3.0 \text{ V} \sim 5.5 \text{ V}$). The analog circuits, such as ADCs, Bandgap circuits, and the oscillators, are powered by the output of AVCCLDO. And the digital circuits are powered by the output of DVCCLDO, the digital power supply circuit.

When the input voltage is higher than 3.3V, the internal LDO circuit (AVCCLDO) will keep the power of AVCC 3.3V output to prevent the performance variation in analog circuit caused by the ripple from the VDD5 source. When VDD5 is lower than 3.3V, V9260F will disable the AVCCLDO automatically, and then the power of AVCC will be switched to VDD5 power.

The driving capability of AVCC is 30mA. It means AVCC could keep stable output voltage when the power consumption is less than 30mA. Otherwise, the output voltage of AVCC will drop when the load current in analog circuit increased. AVCC should be connected to one parallel circuit combined with a \geq 4.7uF capacitor and a 0.1uF decoupling capacitor.

4.1. Power Supply Monitoring Circuit

In the V9260F, an internal power supply monitoring circuit is designed to supervise the power AVCC. When the AVCC is lower than 2.8V ($\pm 5\%$), a power-down interrupt signal is triggered, and the flag bit PDN (bit28 of SysCtrl, 0x0180) is set to 1, that will be cleared automatically when the power down event disappears.

When the voltage on pin AVCC is lower than 2.8V, "PDN_R" (bit22,0x0180) is set to '1', that will be fix as "1", when the power supply is higher than 2.8 V (\pm 5%), until user clear it by writing any data to SysCtrl register (0x0180).

When the voltage on pin AVCC is lower than 2.8V, if the interrupt output is enabled (IEPDN=1, bit3 of MTPARAO, 0x0183), the pin INT will output high logic signaling the master MCU that the V9260F has been powered down, until the power down event disappears.

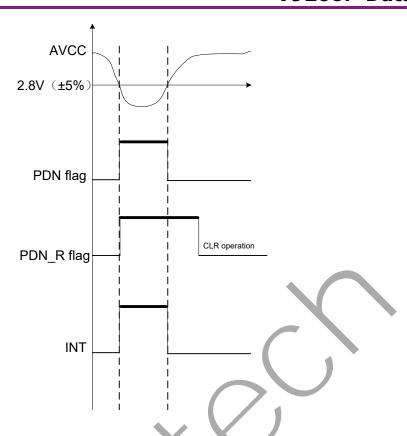


Figure 4-2 Power-Down Interrupt

4.2. Digital Power Supply

The digital power supply for the digital circuits, and is derived by an on-chip LDO from the power input (AVCCLDO). This DVCCLDO keeps working even though the system is powered down.

DVCCLDO has a driving capability of 35 mA, which means when the load current on the digital circuits is less than 35 mA, DVCCLDO will output the stable voltage; but when the load current is higher than 35 mA, the output will reduce as the current increases.

It is recommended to decouple the pin "DVCC" externally with a \geq 4.7- μ F capacitor in parallel with a 0.1- μ F capacitor.

4.3. Registers

Table 4-1 DVCCLDO Output Voltage Adjustment

Register	Bit	Default	Description
			To adjust the DVCCLDO output voltage
ANCtrl2	Bit[14:12]		000: No adjustment
0x0187	LDOVSEL<2:0>	0	001: -0.1 V
			010: +0.2 V

	011: +0.1 V
	100: -0.4 V
	101: -0.5 V
	110: -0.2 V
	111: -0.3 V

5.Bandgap Circuit

In V9260F, the Bandgap circuit outputs a reference voltage and bias voltage, about 1.188V with a typical temperature coefficient of 10ppm/°C, for ADCs and the 3.2MHz RC oscillator. The Bandgap circuit must be enabled before ADCs and the RC oscillator, and typically, this circuit consumes about 0.08mA.

By default the Bandgap circuit is disabled. Users can set the bit "BGPPDN" (bit27 of ANCtrl0, 0x0185) to '1' to enable the Bandgap circuit. In the Sleep Mode, this circuit is disabled automatically; and in the Current Detection Mode, this circuit is enabled automatically.

Users can configure "bit[14:12]" and "bit[9:8]" of "ANCtrlo" register (0x0185) to adjust the temperature coefficient to kill the temperature coefficient introduced by the external components, with the following steps:

- 1) Assume the current settings of relative bits are REST<2:0>='010' and RESTL<1:0>='00', which means an additional +20ppm for temperature coefficient of Bandgap.
- 2) Measure meter errors in high and low temperature conditions. Assume user has calibrated the meter error to 0 at 20°C, and the measuring errors are 0.6% at 80°C and -0.4% at -40°C separately. Then a -(0.6%-(-0.4%))/2=-0.5% measuring error needs to be compensated relative to high temperature working condition, equivalent to -0.5%/(80-20)=-5000/60=-83ppm, rounding to -80ppm.
- 3) As measuring error is minus two times of REF temperature coefficient error, to compensate a -80ppm error, an additional +40ppm of Bandgap REF temperature coefficient adjustment is needed. Taking the initial +20ppm setting into consideration, the actual adjustment should be +60ppm. According to the lookup table of RESTL<1:0> and REST<2:0>, user should set register RESTL<1:0> to '01' and REST<2:0> to '111', whose combination equals to a +60ppm temperature coefficient adjustment.

A temperature coefficient drift of "x" in the Bandgap circuit results in a drift of "-2x" in the measurement error.

Table 5-1 Configuration for Bandgap Circuit

Register	bit	Description
ANCtrlO, 0x0185, R/W	Bit27 BGPPDN	Set this bit to '1' to enable Bandgap circuit to provide ADCs and the 3.2-MHz RC oscillator with the reference voltage and biasing voltage. Therefore, in the Metering Mode, this bit must be set to '1' before enabling the ADCs and the 3.2-MHz RC oscillator. By default the Bandgap circuit is disabled. In the Sleep Mode, this bit is cleared automatically. In the Current Detection Mode, this bit is set to '1' automatically.
	Bit[14:12] REST<2:0>	To finely adjust the temperature coefficient of the Bandgap circuit. In order to obtain the best metering performance and temperature performance during normal metering, it must be configured according to the calculated result. The calculation method, please refer to Bandgap Circuit chapter.

		V9200F Datasileet
Register	bit	Description
		000: No adjustment
		001: +10 ppm
		010: +20 ppm
		011: +30 ppm
		100: -40 ppm
		101: -30 ppm
		110: -20 ppm
		111: -10 ppm
		To roughly adjust the temperature coefficient of the Bandgap circuit. In order to obtain the best metering performance and temperature performance during normal metering, it must be configured according to the calculated result. The calculation method, please refer to Bandgap Circuit chapter.
	Bit[9:8]	00: 0
RESTL	RESTL<1:0>	01: +70 ppm
		10: -140 ppm
		11: -70 ppm

6.UART Interface

V9260F supports the communication with the master MCU as a slave via the UART serial interface. The UART serial interface has features:

- Asynchronous, half-duplex communication;
- A 11-bit byte, composed of 1-bit Start bit, 8-bit Data bits, 1-bit Parity bit (Odd), and 1-bit Stop bit;
- Least significant bit (lsb) shifted in or out firstly when the chip receives or transmits a byte;
- Configurable baud rate.

When a reset event, such as a POR WDT overflow reset, RX reset, or global software reset, occurs, the UART serial interface will be reset. In the Sleep Mode, the interface is idle.

6.1. Data Byte

The data byte received and transmitted via the UART serial interface of V9260F is composed of 11 bits, including 1-bit Start bit (Logic low), 8-bit Data bits, 1-bit odd Parity bit and 1-bit Stop bit (Logic high), as shown in Figure 6-1. When V9260F receives or sends a data byte, the least significant bit always is shifted in or out firstly.

Figure 6-1 Structure of an 11-Bit Data Byte

6.2. Baud Rate Configuration

In V9260F, "UARTCLK" is divided to generate the baud rate. When the crystal oscillation circuit works, "UARTCLK" will be sourced by "CLK1" that is accurate enough for the UART communication. When the crystal stops running, "UARTCLK" is sourced by "CLK2" that is not accurate enough for the UART communication. In V9260F, users can configure the baud rate via the bit "CKUDIV" (bit[4:2] of SysCtrl, 0x0180).

Table 6-1 Baud Rate Configuration

Bit[4:2] CKUDIV	fuartclk (kHz)	Theoretical Baud Rate (bps)	Actual Baud Rate (bps)		
000/110/111	51.2	1200	1190.70		
001	102.4	2400	2381.40		
010	204.8	4800	4762.79		

Bit[4:2] CKUDIV	fuartclk (kHz)	Theoretical Baud Rate (bps)	Actual Baud Rate (bps)
011	409.6	9600	9525.58
100	819.2	19200	19051.16
101	1638.4	38400	38102.33

When a 3.2768-MHz crystal is used, after any global reset the actual baud rate is a half of the desired rate. So users must set the bit "XTAL3P2M" (bit19 of ANCtrl0, 0x0185) to '1' to disable the 1/2 divider. In V9260F, the baud rate will be reset to 2400 bps when the WDT overflow event occurs, but the bit "CKUDIV" will hold its configuration.

6.3. Communication Protocol

In the read, write, or broadcast communication, the master MCU needs a command frame that is composed of 8 data bytes to operate a 32-bit data in V9260F.

Head Byte	Control Byte	Address Byte	Data Byte 0	Data Byte 1	Data Byte 2	Data Byte 3	Check Byte	
-----------	--------------	-----------------	-------------	-------------	-------------	-------------	------------	--

Figure 6-2 Command Frame for Read/Write/Broadcast Operation

In the read or write operation, when V9260F receives the command frame from the master MCU, it will reply to the master MCU with a respond frame of different structures. In the broadcast communication, V9260F will not reply to the master MCU to avoid the communication conflict.

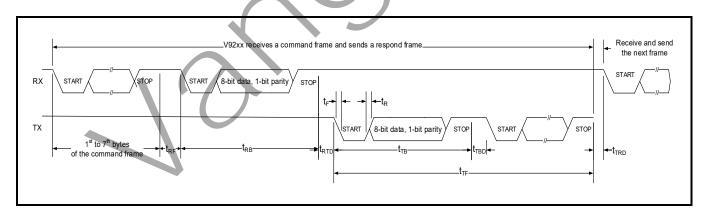


Figure 6-3 depicts the timing of UART communication.

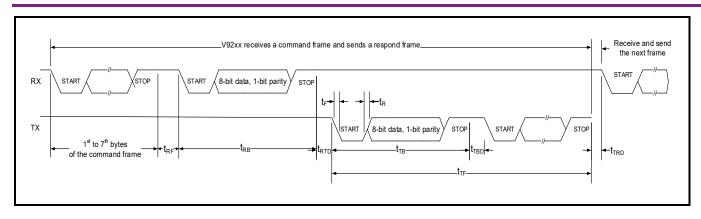


Figure 6-3 Timing of UART Communication

Table 6-2 UART Communication Timing Parameters

Parameter	Description
	Time to receive a data byte on pin "RX"
t _{RB}	$t_{RB} = \frac{11}{baudrate}$
	Where, "baudrate" is the actual baud rate, please refer to Table 6-1 for more detailed information.
	The maximum time between two bytes when receiving a command frame on pin "RX"
trf	$t_{RF} = \frac{16}{\text{baudrate}}$
	When the the actual baud rate is 2400 bps, $t_{RF}=80$ ms. After a timeout event, the UART interface is idle and waits for the next command frame.
t _{RTD}	The delay between the command frame reception on pin "RX" and respond frame transmission on pin "TX". 0 ms ≤ t _{RTD} ≤ 20 ms
	Please note no respond frame will be transmitted in the broadcast communication, and at least 1-ms delay is recommended between two continuous command frames for the broadcast communications.
tтғ	Time to transmit a respond frame in the read or write operation, depending on the structure of the frame.
	Time to transmit a data byte.
t _{TB}	$t_{TB} = \frac{11}{baudrate}$
	Where "baudrate" is the actual baud rate, please refer to Table 6-1 for more detailed information.
T _{TBD}	Delay between two continuous data bytes in a respond frame

Parameter	Description
	0 ms ≤ t _{TBD} ≤ 20 ms
t _{TRD}	The delay between the respond frame transmission on pin "TX" and the next command frame reception on pin "RX".
	More than 1 ms is recommended.
t _R	Rising time of "RX" and "TX", about 300 ns
t _F	Falling time of "RX" and "TX", about 300 ns

6.3.1. Write Operation

The master MCU needs a command frame, composed of 8 data bytes, to write of a 32-bit data to the register of V9260F. When it receives the command frame, V9260F will transmit a respond frame, composed of 4 data bytes, to reply to the master MCU. On both transmission and reception, the lsb is shifted in or out firstly.

In Control Byte, "B3" and "B2", determined by the input on pins "A1" and "A0", are used to select the slave chip when more than one chip are used.

Table 6-3 Structure of Data Byte (B7:B0) From Master MCU to V9260F on Write Operation

Order	Byte	B7	В6	B5	B4	В3	B2	B1	во
1	Head Byte	1	1		1	1	1	1	0
2	Control Byte	The higher 4	4 bits of the t	arget registe	r address	A1	AO	1	0
3	Address Byte	The lower 8	The lower 8 bits of the target register address						
4	Data Byte 0	Bit [7:0] of	Bit [7:0] of the target data						
5	Data Byte 1	Bit[15:8] of	the target da	ata					
6	Data Byte 2	Bit[23:16] o	of the target of	data					
7	Data Byte 3	Bit[31:24] o	Bit[31:24] of the target data						
		The checksu	The checksum						
8	Check Byte		Add the above 7 data bytes, invert the sum, and then add it to "0x33" to obtain the checksum.						obtain

Table 6-4 Structure of Data Byte (B7:B0) From V9260F to Master MCU on Write Operation

Order	Byte	B7	В6	B5	B4	В3	B2	B1	во
1	Head Byte	1	1	1	1	1	1	1	0
2	Control Byte	The higher	The higher 4 bits of the target register address					1	0
3	Address Byte	The lower 8 bits of the target register address							

Order	Byte	B7	В6	B5	B4	В3	B2	B1	во
		The checks	um						
4	Check Byte	Add the abo		a bytes, inv	ert the sum, a	and the	n add it	to "0x	33" to

6.3.2. Read Operation

The master MCU needs a command frame, composed of 8 data bytes, to read of a 32-bit data of a register of V9260F. When it receives the command frame, V9260F will transmit a respond frame, composed of $4 \times N + 4$ (1 $\leq N \leq 255$) data bytes, to reply to the master MCU. On both transmission and reception, the lsb is shifted in or out firstly.

In Control Byte, "B3" and "B2", determined by the input on pins "A1" and "A0", are used to select the slave chip when more than one chip are used.

Table 6-5 Structure of Data Byte (B7:B0) From Master MCU to V9260F on Read Operation

Order	Byte	B7	В6	B5	B4	В3	B2	B1	во
1	Head Byte	1	1	1	1	1	1	1	0
2	Control Byte	The higher	4 bits of the t	arget registe	er address (D ₁) A1	AO	0	1
3	Address Byte	The lower 8	bits of the ta	arget registe	r address (D ₁))			
4	Data Byte 0	located at t Control Byte (4 bytes) is When the m When more the target a maximum	The length (N, in unit of "Word") of the data to be read from the registers located at the addresses beginning with the target address (D ₁) given by the Control Byte and Address Byte. When Data Byte 0 is 'O', it means 1 data word (4 bytes) is read out. When the master MCU reads of the target address only, N will be '1'. When more than one register located at continuous addresses beginning with the target address (D ₁), N will be equal to the number of the address. The maximum value of N is 255, which means no more than 255 continuous registers can be read at a time.						
5	Data Byte 1								
6	Data Byte 2	No actual fu	unction						
7	Data Byte 3								
8	Check Byte	The checkson Add the about the obtain the o	ove seven dat	a bytes, inve	ert the sum, ar	nd then	add it i	to "0x :	33" to

Table 6-6 Structure of Data Byte (B7:B0) From V9260F to Master MCU on Read Operation

Order	Byte	B7	B6	B5	B4	В3	B2	B1	B0

Order	Byte	B7	В6	B5	B4	В3	B2	B1	во
1	Head Byte	1	1	1	1	1	1	1	0
2	Control Byte	The higher 4 b	its of the tar	get register	address (D ₁)	A1	AO	О	1
3	Length Byte	N, equal to Da When Data By	3		aster MCU to \ ual to `1′ .	/9260F	on re	ad ope	ration.
4	Data Byte 10	Bit[7:0] of the	register loc	ated at targ	jet address (D ₁)			
5	Data Byte 11	Bit[15:8] of th	ne register lo	cated at tar	get address (E) ₁)			
6	Data Byte 12	Bit[23:16] of t	Bit[23:16] of the register located at target address (D ₁)						
7	Data Byte 13	Bit[31:24] of t	Bit[31:24] of the register located at target address (D ₁)						
8	Data Byte 20	Bit[7:0] of the	Bit[7:0] of the register located at address D ₂ (D ₂ =D ₁ +1)						
9	Data Byte 21	Bit[15:8] of th	ne register lo	cated at ad	dress D_2 ($D_2=0$	D ₁ +1).			
)			
$4 \times N + 0$	Data Byte NO	Bit[7:0] of the	register loc	ated at add	ress D _N (D _N =D	1 + N - 1))		
$4 \times N + 1$	Data Byte N1	Bit[15:8] of th	ne register lo	cated at ad	dress D _N (D _N =I	D ₁ + N-	1)		
4×N+2	Data Byte N2	Bit[23:16] of t	the register I	ocated at a	ddress Dn (Dn=	= D ₁ + N	-1)		
4×N+3	Data Byte N3	Bit[31:24] of t	the register I	ocated at a	ddress D _N (D _N =	= D ₁ + N	-1)		
4×N+4	Check Byte	The checksum Add the above obtain the che	4×N+3 dat	a bytes, inv	ert the sum, aı	nd ther	n add i	t to " 0>	<33 " to

6.3.3. Broadcast Communication

The master MCU needs a command frame, composed of 8 data bytes, to write a 32-bit data to the registers of more than one V9260F in the broadcast communication. When receiving a command frame, V9260F should not transmit a respond frame to reply to the master MCU to avoid the communication error. On receiving a data frame, the lsb is shifted in or out firstly.

Table 6-7 Structure of Data Byte (B7:B0) From Master MCU to V9260F on Broadcast Operation

Order	Byte	В7	В6	B5	B4	В3	B2	B1	во
1	Head Byte	1	1	1	1	1	1	1	0
2	Control Byte	The higher 4	4 bits of the t	r address	X*	X*	0	0	
3	Address Byte	The lower 8	bits of the ta	arget register	address			•	
4	Data Byte 0	Bit [7:0] of	Bit [7:0] of the target data						
5	Data Byte 1	Bit[15:8] of	Bit[15:8] of the target data						

Byte	В7	В6	B5	B4	В3	B2	B1	В0
Data Byte 2	Bit[23:16] o	Bit[23:16] of the target data						
Data Byte 3	Bit[31:24] o	Bit[31:24] of the target data						
Check Byte	The checksum Add the above seven data bytes, invert the sum, and then add it to "0x33" to							
	Data Byte 2 Data Byte 3	Data Byte 2 Bit[23:16] c Data Byte 3 Bit[31:24] c The checksu Check Byte Add the above	Data Byte 2 Bit[23:16] of the target of the checksum	Data Byte 2 Bit[23:16] of the target data Data Byte 3 Bit[31:24] of the target data The checksum Add the above seven data bytes, inver	Data Byte 2 Bit[23:16] of the target data Data Byte 3 Bit[31:24] of the target data The checksum Check Byte Add the above seven data bytes, invert the sum, and	Data Byte 2 Bit[23:16] of the target data Data Byte 3 Bit[31:24] of the target data The checksum Add the above seven data bytes, invert the sum, and then a	Data Byte 2 Bit[23:16] of the target data Data Byte 3 Bit[31:24] of the target data The checksum Check Byte Add the above seven data bytes, invert the sum, and then add it to	Data Byte 2 Bit[23:16] of the target data Data Byte 3 Bit[31:24] of the target data The checksum Check Byte Add the above seven data bytes, invert the sum, and then add it to "0x3"

7.RMS & Power Measurement

The specific metering architecture in the V9260F has features:

- 2 independent oversampling Σ/Δ ADCs: one for voltage (U), and one for current (I)
- High metering accuracy:
 - Less than 0.1% of active energy metering accuracy over dynamic range of 5000:1
 - Less than 0.1% of reactive energy metering accuracy over dynamic range of 3000:1
- Current detection

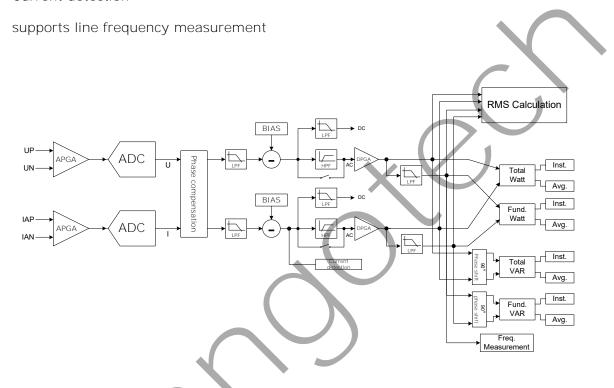
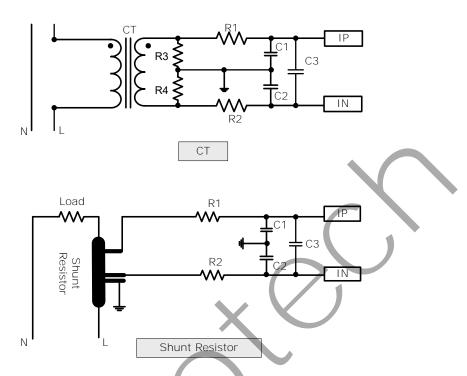


Figure 7-1 Signal Processing in Specific Metering Architecture

7.1. Metering Clock (MEACLK)

The metering clock (MEACLK) is sourced by "CLK1", generated by the crystal oscillation circuit, or "CLK2", generated by the 3.2-MHz RC oscillator. When both circuits stop running, the Vango metering architecture will stop working.


7.2. Analog Input

V9260F has two analog inputs forming one current channel and one voltage channel. Each current

channel consists of two fully differential voltage inputs. And the voltage channel consists of two pseudo differential voltage inputs: "UP" is the positive input for the voltage channel, and "UN", connected to the ground, is the negative input for the voltage channel. Each input has a maximum voltage of ± 200 mV, and each pair of a maximum differential voltage of ± 400 mV.

For the current channel, a shunt resistor can be used for analog inputs.

Figure 7-2 Analog Input of Current Channels

For voltage channels, a potential transformer (PT) or a resistor-divider network can be used for analog inputs.

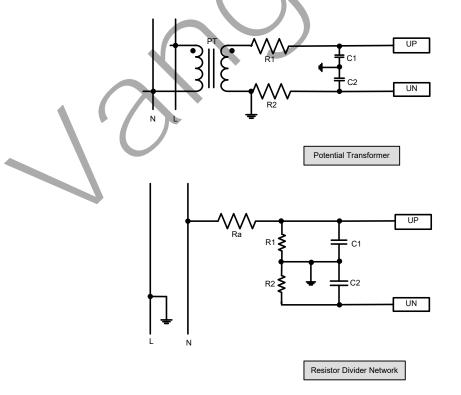


Figure 7-3 Analog Input of Voltage Channels

To match the output signals of the transformers to the measurement scale of ADCs, Analog

Programmable Gain Amplifiers (APGA) with the possible gain selection of 1, 4, 16, and 32 for the current input, and of 1 and 4 for the voltage input, are set. The analog PGA gain is determined by the output signal of the transformer. The product of the output signal and PGA gain (Including digital and analog PGA) must be no higher than the voltage reference. Equation 7-1 depicts the signal processing of current and voltage:

$$U' = PGAu \times (Au \times sin\omega t + DCu)$$

 $I' = PGAi \times [Ai \times sin(\omega t + \psi) + DCi]$ Equation 7-1

Where, "PGAu" and "PGAi" is the analog PGA gain for voltage and current; "Au" and "Ai" are the amplitude of the input signals (V); "DCu" and "DCi" are the DC components of the raw voltage and current.

Table 7-1 Analog PGA Configuration

Register	Bit	Default	Description
	Bit7 GU	0	To set analog PGA gain of analog input of Voltage Channel 0: ×4 (Recommended) 1: ×1
ANCtrIO 0x0185	Bit[1:0] GI<1:0>	0	To set the analog PGA gain of analog input of Current Channel. The analog PGA gain is determined by the output signal of the sensor. The product of the output signal and PGA gain (Both analog and digital) must be no more than the voltage reference. O0: ×32 O1: ×16 10: ×4 11. ×1

7.3. Analog-to-Digital Conversion

Second-order Σ - Δ ADCs are applied in the voltage and current channels in V9260F. Σ - Δ ADCs can be enabled or disabled via configuring the "ANCtrIO" register (0x0185).

Table 7-2 Enable/Disable ADCs of Each Channel

Register	Bit	Default	Description
ANCtrIO 0x0185	Bit26 ADCUPDN	0	Set this bit to '1' to enable Voltage Channel ADC. The Bandgap circuit must be enabled before this ADC. Both in the Sleep Mode and in the Current Detection Mode, this bit is

Register	Bit	Default	Description
			cleared automatically.
	Bit24 ADCIPDN	0	Set this bit to '1' to enable Current Channel ADC. The Bandgap circuit must be enabled before this ADC. In the Sleep Mode, this bit is cleared automatically. In the Current
			Detection Mode, this bit is set to '1' automatically.

The sampling frequency of ADCs, or ADC clock (ADCCLK), is derived from "CLK1". By default, it is 819.2 kHz, a quarter of the metering clock (MEACLK), and can be adjusted via "bit[17:16]" of "ANCtrlo" (0x0185).

Table 7-3 Configuring ADCCLK

Register	Bit	Description
ANCtrl0 0x0185	Bit[17:16] ADCLKSEL<1:0>	To select the sampling frequency of the oversampling ADC (ADC clock, ADCCLK). The sampling frequency of ADCs must be a quarter or one eighth of the metering clock (MEACLK) frequency when the chip operates with full functions in the Metering Mode. O0: 819.2 kHz O1: 409.6 kHz 10: 204.8 kHz In the Current Detection Mode, these bits must be set to "Ob10" to lower the power dissipation. When the chip operates with full functions in the Metering Mode, their default values are recommended to be used for the best performance.

The signal output from ADCs must be input to a phase compensation circuit to correct the phase error between the current and voltage signal introduced by the mismatch of the transformers and ADCs.

7.4. Phase Compensation

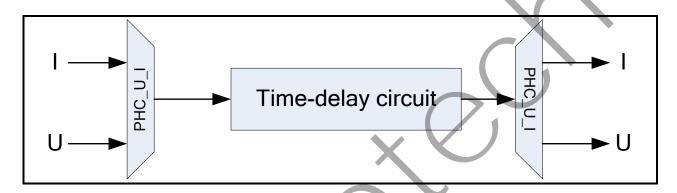

A phase compensation circuit composed of a chain of time-delay units is applied to correct the phase error between the current and voltage signals. Either the current or voltage signal can be selected to be delayed via the bit **"PHCIU"** (bit18 of MTPARA1, 0x0184). The phase compensation resolution is 0.0055° /lsb, and the maximum phase error correction range is $\pm 1.4^{\circ}$.

Table 7-4 Registers for phase compensation

Register	Bit Default	egister	Description
----------	-------------	---------	-------------

Register	Bit	Default	Description
	Bit19 ENPHC	0	Set this bit to '1' to enable phase compensation By default this function is disabled.
MTPARA1	Bit18 PHCIU	0	Set this bit to '1' to delay voltage for phase compensation Clear this bit to delay current for phase compensation.
	Bit[15:8] PHC	0	To set the absolute value for phase compensation. By default the resolution is 0.0055°/lsb, and a phase error up to 1.4° can be calibrated.

Figure 7-4 Phase Compensation

Compensate the phase error at power factor of 0.5L

$$N = Round \left(\frac{3011}{2} \times E \times \frac{fsmpl}{819200} \right)$$

Equation 7-2

where

N is the value to be set in bit[15:8] of register MTPARA1 (0x0184);

E is the error displayed in LCD screen of the calibration equipment.

 $\emph{f}_{\textit{smpl}}$ is determined by the configuration of MEACLKSEL bits (Bit1, SysCtrl, 0x0180).

Table 7-5 Resolution and correction range at different frequencies

N value	configure		f _{smpl} (Hz)	resolution (°/lsb)	correction range
	CKMDIV	0	3276800	0.005	1.4
[-255, +255]	bit1, 0x0180	1	819200	0.022	5.6

7.5. Digital Input and DC Removement

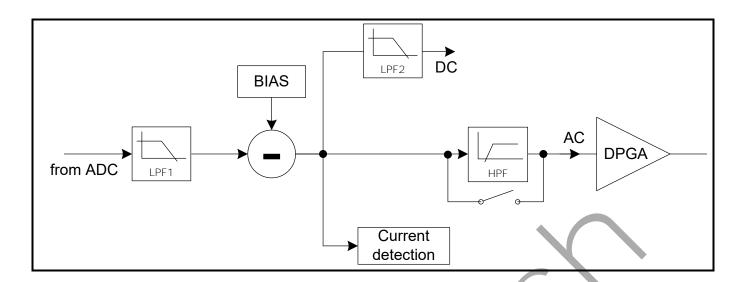


Figure 7-5 Digital Input and DC Removement (Current Signal is Taken as an Example.)

The 1-bit code stream output from the oversampling Σ/Δ ADC can be enabled to be sent to the decimation filter to suppress the high-frequency noise and to lower the sampling frequency to get the raw waveform of each signal. The raw waveform is transferred to a subtractor to remove the direct drift introduced by the external components and ADCs, with the help of the DC bias preset in registers "ZZDCI" (0x0123) and "ZZDCU" (0x0124). Then, the signals are processed as follows:

- The signals are transferred to low-pass filter, "LPF2" to obtain the DC components of the signals that can be read out from registers for DC components located at "0x0114" (DCI) and "0x0115" (DCU).
- By default the signals are transferred to a high-pass filter (HPF) to remove the DC components of the raw waveforms and obtain the AC components to calculate power and RMS.
- In Channel I, the current signal is transferred for the current detection. Please refer to "Current Detection Interrupt" for more detailed information.

The registers for DC components of voltage and current, located at addresses of "OxO114" and "OxO115", are in format of 32-bit 2' complement. When the "MEACLK" frequency is 3.2768 MHz, the data are updated in 160 ms and settled in 300 ms; when the "MEACLK" frequency is 819.2 kHz, the data are updated in 640 ms and settled in 1200 ms. The signal input to the decimation filter is enabled or disabled via configuring "bit[17:16]" of "MTPARA1" (0x0184). When this function is enabled, the code stream is accumulated to the filter; when this function is disabled, a constant 'O' will be input for the digital signal processing. Users can disable this HPF via configuring this bit "BPHPF" (bit20 of MTPARA1, 0x0184).

Table 7-6 Enable/Disable Digital Inputs

Register	Bit		Description
MTPARA1 0x0184	Bit17	ONI	To enable digital signal input of current channel for digital signal processing 1: Enable 0: Disable. When this bit is cleared, a constant '0' will be input for the digital signal processing.

Register	Bit		Description
	Bit16	ONU	To enable digital signal input of voltage channel for digital signal processing 1: Enable 0: Disable. When this bit is cleared, a constant '0' will be input for the digital signal processing.

Digital Programmable Gain Amplifiers (DPGA) with possible gain selection of 1/32~32, via "MTPARA1" (0x0184), are applied to digital signals output from the high-pass filter to amplify the signals. The product of the signal and PGA gains (Including digital and analog PGA) must be no higher than the voltage reference.

Table 7-7 DPGA Gain Selection for Digital Signals

Register	Bit	Default	Description
MTPARA1	Bit[7:4] PGAI	0	To set digital PGA gain of current input 0000: ×1; 0001: ×1/2; 0010: ×1/4; 0011; ×1/8; 0100: ×1/16; 0101: ×1/32; 1000: ×1; 1001: ×2; 1010: ×4; 1011: ×8; 1100: ×16; 1101: ×32.
0x0184	Bit[3:0] PGAU	0	To set digital PGA gain of voltage input 0000: ×1; 0001: ×1/2; 0010: ×1/4; 0011: ×1/8; 0100: ×1/16; 0101: ×1/32; 1000: ×1; 1001: ×2; 1010: ×4; 1011: ×8; 1100: ×16; 1101: ×32.

Equation 7-3 depicts the signal processing:

$$U = PGAdu \times \frac{PGAu \times Au \times sin\omega t}{1.188}$$

$$I = PGAdi \times \frac{PGAi \times Ai \times sin(\omega t + \phi)}{1.188}$$
Equation 7-3

Where, "PGAdu" and "PGAdi" are the DPGA gains; "PGAu" and "PGAi" are the APGA gains; "Au" and "Ai" are the amplitude of current and voltage inputs; and 1.188 is the reference voltage.

7.6. RMS Calculation

The alternating component (AC) of the current and voltage can be used for:

- 1. The total current and voltage RMS calculation directly;
- 2. The fundamental current and voltage RMS calculation after being processed by the band-pass filter (BPF) that introduces a gain of 0.85197.

The values of the total current and voltage RMS are acquired from the following equations:

Irms =
$$\frac{\sqrt{2}}{2} \times 0.99992 \times PGAdi \times \frac{PGAi \times Ai}{1.188}$$

Equation 7-4

Urms =
$$\frac{\sqrt{2}}{2} \times 0.99992 \times PGAdu \times \frac{PGAu \times Au}{1.188}$$

Equation 7-5

And the fundamental current and voltage RMS are acquired from the following equations:

BIrms =
$$\frac{\sqrt{2}}{2} \times 0.85197 \times PGAdi \times \frac{PGAi \times Ai}{1.188}$$

Equation 7-6

BUrms =
$$\frac{\sqrt{2}}{2} \times 0.85197 \times PGAdu \times \frac{PGAu \times Au}{1.188}$$

Equation 7-7

Where,

"PGAdi" and "PGAdu" are the digital PGA gains of current and voltage:

"PGAi" and "PGAu" are the analog PGA gains of current and voltage;

"Ai" and "Au" are the amplitude of current and voltage inputs:

'1.188' is the reference voltage;

'0.99992' and '0.85197' are the gains introduced by the filters.

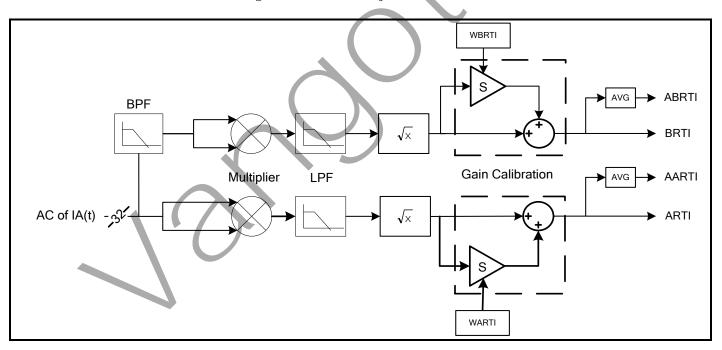


Figure 7-6 Total/Fundamental RMS Calculation

The current or voltage RMS calculated via the above equations must be gain calibrated, as depicted in the following equation:

$$RMS = RMS' \times (1 + S)$$

Equation 7-8

Where,

RMS' is the raw current or voltage RMS, calculated via the above equations;

RMS is the current or voltage RMS after calibration;

S is the gain calibration, set in registers located at addresses "0x012C", "0x0132", "0x0126" and "0x012B".

After gain calibration, the instantaneous RMS, which will be averaged to obtain the average RMS, is stored in the registers for total/fundamental current/voltage RMS. All the registers are in the format of 32-bit 2'-complement. When the "MEACLK" frequency is 3.2768 MHz, registers for raw and instantaneous RMS are updated in 160 ms and settled in 500ms; and registers for average RMS are updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, registers for raw and instantaneous RMS are updated in 640 ms and settled in 2000 ms; and registers for average RMS are updated in 5.12 s and settled in 12 s.

7.7. Power Calculation

The alternating component (AC) of the current and voltage can be used for:

- 1. The total active power calculation directly;
- 2. The total reactive power calculation after a phase shift by 90 degrees via the Hilbert filter.

And after being processed by the band-pass filter, the current and voltage signal are used to compute the fundamental active and reactive power.

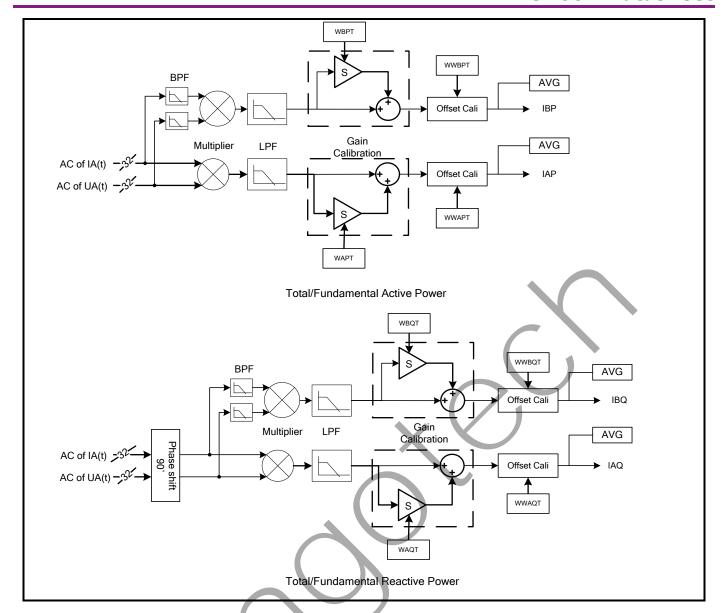


Figure 7-7 Active/Reactive Power Calculation

The total signals, including the fundamental wave and harmonic wave, are used to calculate total active and reactive power directly. The active power is acquired via the following equation:

$$P = \frac{\sqrt{2}}{2} \times \frac{Ai \times PGAi \times PGAdi}{1.188} \times \frac{\sqrt{2}}{2} \times \frac{Au \times PGAu \times PGAdu}{1.188} \times \cos \theta \times 0.99985 \times 2^{31}$$
 Equation 7-9

And the reactive power is acquired via the following equation:

$$Q = \frac{\sqrt{2}}{2} \times \frac{Ai \times PGAi \times PGAdi}{1.188} \times \frac{\sqrt{2}}{2} \times \frac{Au \times PGAu \times PGAdu}{1.188} \times \sin \theta \times 0.78402 \times 2^{31}$$
 Equation 7-10

Where, "PGAdi" and "PGAdu" are digital PGA gains of current and voltage; "PGAi" and "PGAu" are analog PGA gains of current and voltage; "Ai" and "Au" are the peak values of current and voltage inputs; "O" is the phase difference between voltage and current signals; "0.99985" and "0.78402" are the gains introduced by the filters.

Filtered by the band-pass filter, the signals are used to calculate the fundamental active and reactive power.

Fundamental active power:
$$BP = \frac{\sqrt{2}}{2} \times \frac{Ai \times PGAi \times PGAdi}{1.188} \times \frac{\sqrt{2}}{2} \times \frac{Au \times PGAu \times PGAdu}{1.188} \times \cos \theta \times 0.72585 \times 2^{31}$$
 Equation 7-11

Fundamental reactive power:
$$BQ = \frac{\sqrt{2}}{2} \times \frac{Ai \times PGAi \times PGAdi}{1.188} \times \frac{\sqrt{2}}{2} \times \frac{Au \times PGAu \times PGAdu}{1.188} \times \sin \theta \times 0.36292 \times 2^{31}$$
 Equation

7-12

Where, "PGAdi" and "PGAdu" are digital PGA gains of current and voltage; "PGAi" and "PGAu" are analog PGA gains of current and voltage; "Ai" and "Au" are the peak values of current and voltage inputs; "O" is the phase difference between voltage and current signals; "0.72585" and "0.36292" are the gains introduced by the filters.

The active or reactive power must be gain and offset calibrated, as depicted in the following equation,

$$P = P' \times (1 + S) + C$$

Equation 7-13

Where,

P' is the raw active or reactive power calculated via the above equations

P is the active or reactive power after calibration;

S is the gain calibration set in the registers listed in Table 9-12

C is the offset calibration set in the registers listed in Table 9-12

After gain and offset calibration, the instantaneous active and reactive power, which will be averaged to obtain the average active and reactive power, is stored in the total and fundamental active/reactive power registers. All the registers are in the format of 32-bit 2'-complement. When the "MEACLK" frequency is 3.2768 MHz, registers for raw and instantaneous power are updated in 160 ms and settled in 500 ms; and registers for average power are updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, registers for raw and instantaneous power are updated in 640 ms and settled in 2000 ms; and registers for average power are updated in 5.12 s and settled in 12 s.

7.8. Line Frequency Measurement

V9260F supports the line frequency measurement.

In the line frequency measurement circuit, the fundamental voltage signal is sampled at a frequency of 3200 Hz for the negative-to-positive zero-crossing detection, and the number of the samples among two continuous negative-to-positive transitions is equal to the instantaneous line frequency. So the instantaneous line frequency is calculated as follows:

$$f = \frac{3200}{FRFO}$$
 Equation 7-14

Where, f is the line frequency to be measured; FREQ is the content of the instantaneous line frequency register (0x019A), in the form of decimal.

The instantaneous line frequency will be accumulated 256 times every 1.28s to be averaged to acquire the average line frequency per second:

$$f' = \frac{3200 \times 256}{ASEREO}$$
 Equation 7-15

Where, f' is the line frequency to be measured; ASFREQ is the average line frequency per second read out of the register (0x011D), in the form of decimal.

To improve the measurement accuracy, the above average line frequency per second will be accumulated 8 times every 10.24s to be averaged to acquire the average line frequency:

$$f'' = \frac{3200 \times 256 \times 8}{AFREO}$$

Equation 7-16

Where, f" is the line frequency to be measured; AFREQ is the average line frequency read out of the register (0x011E), in the form of decimal.

In V9260F, a band-pass filter is applied to remove the direct component, the noise and the harmonic wave of the voltage signal to obtain the fundamental voltage for line frequency measurement. The performance of the band-pass filter is affected by the number of bits to be shifted and the filter coefficient. When fewer bits are shifted, the filter needs less time to respond, is less sensitive to the frequency deviation, and has less capability to depress the noise and harmonics.

Table 7-8 Bandpass Filter Parameters

	Shift bits (0x0183	3, MTPARAO)	Bandpass filter coefficient	Frequency deviation		
Group	BPFSFT, bit[14:13]	Bits to be shifted	BPFPARA, 0x0125	47.5Hz(db)	150Hz(db)	
0	00	>>8	0x811D2BA7	-4.2	-30.5	
1	01	>>9	0x80DD7A8C	-8.9	-36.5	
2	10	>>10	0×80BDA1FE	-14.1	-42.6	
3	11	>>11	0x80ADB5B8	-20	-48.6	
Generally, Group 0 is preferred.						

7.9. Calibration

7.9.1. Registers for Meter Calibration

Table 7-9 Registers for Meter Calibration

Address	Register		R/W	Format
0x011B	AARTU	The average total voltage RMS	R/W	32- bit 2' -complement

Address	Register		R/W	Format
0x011C	AARTI	The average total current RMS	R/W	32-bit 2'-complement
0x0121	ABRTU	The average fundamental voltage RMS	R/W	32- bit 2' -complement
0x0122	ABRTI	The average fundamental current RMS	R/W	32- bit 2' -complement
0x0119	AAP	The average total active power	R/W	32- bit 2' -complement
0x011A	AAQ	The average total reactive power	R/W	32-bit 2'-complement
0x011F	ABP	The average fundamental active power	R/W	32-bit 2'-complement
0x0120	ABQ	The average fundamental reactive power	R/W	32- bit 2' -complement
0x012C	WARTI	Set a value to gain calibrate the total current RMS.	R/W	32-bit 2'-complement
0x0132	WARTU	Set a value to gain calibrate the total voltage RMS.	R/W	32- bit 2' -complement
0x0126	WBRTI	Set a value to gain calibrate the fundamental current RMS.	R/W	32-bit 2'-complement
0x012B	WBRTU	Set a value to gain calibrate the fundamental voltage RMS.	R/W	32-bit 2'-complement
0x012E	WAPT	Set a value to gain calibrate the total active power.	R/W	32- bit 2' -complement
0x0130	WAQT	Set a value to gain calibrate the total reactive power.	R/W	32- bit 2' -complement
0x012F	WWAPT	Set a value to offset calibrate the total active power.	R/W	32- bit 2' -complement
0x0131	WWAQT	Set a value to offset calibrate the total reactive power.	R/W	32- bit 2' -complement
0x0127	WBPT	Set a value to gain calibrate the fundamental active power.	R/W	32-bit 2'-complement
0x0129	WBQT	Set a value to gain calibrate the fundamental reactive power.	R/W	32- bit 2' -complement
0x0128	WWBPT	Set a value to offset calibrate the fundamental active power.	R/W	32-bit 2'-complement
0x012A	WWBQT	Set a value to offset calibrate the fundamental reactive power.	R/W	32-bit 2'-complement

7.9.2. Equations for Calibration

1. Equation for current/voltage RMS registers

 $Value = V \times G \times K$

Equation 7-17

Where, V is the RMS value of the input signal; G is the gain; and K is a coefficient, 1.486×10^9 for fundamental RMS and 1.745×10^9 for total RMS.

2. Equation for active power registers.

$$P = Vi \times Gi \times Vv \times Gv \times B_D \times cos\theta$$

Equation 7-18

Where, Vi and Vv are the input current and voltage; Gi and Gv are the analog PGA gains for current and voltage respectively; $cos\theta$ is the power factor; B_p is a coefficient, 1.419×10^9 for total active power and 1.030×10^9 for fundamental active power.

3. Equation for reactive power registers

$$Q = Vi \times Gi \times Vv \times Gv \times B_{Q} \times sin\theta$$

Equation 7-19

Where, Vi and Vv are the input current and voltage; Gi and Gv are the analog PGA gains for current and voltage respectively; θ is phase difference between current and voltage; B_q is a coefficient, 1.111×10^9 for total reactive power and 0.514×10^9 for fundamental reactive power.

4. Equation for ratio of RMS and power

The value acquired by Equation 7-17, Equation 7-18, or Equation 7-19 is the theoretical value of the register of RMS or power. It must be multiplied by a ratio to get the actual value (Accurate to the second decimal place).

$$D = \frac{V_n}{Value}$$

Fauation 7-20

Where, *Value* is the theoretical value of the registers acquired by Equation 7-17, Equation 7-18, or Equation 7-19; D is the ratio; and V_n is the rated voltage/current/power.

5. Equation for registers for phase compensation

Compensate the phase error at power factor of 0.5L

$$N = Round \left(\frac{3011}{2} \times E \times \frac{fsmpl}{819200}\right)$$

Equation 7-21

Where

 \emph{N} is the value to be set in bit[15:8] of register MTPARA1 (0x0184);

E is the error displayed in LCD screen of the calibration equipment.

 f_{smpl} is determined by the configuration of MEACLKSEL bits (Bit1, SysCtrl, 0x0180).

6. Equation for gain calibration registers

$$S = 2^{31} (\frac{1}{1+e} - 1) + S_1 (\frac{1}{1+e})$$

Equation 7-22

Where, S is the content to be set in the registers for gain calibration of active/reactive power or current/voltage RMS, in the form of 2'-complement; S_1 is the original value of the registers; e is the error: when this equation is used for the power gain calibration, e is equal to the error (E_p) calculated by Equation 7-26; when this equation is used for the RMS gain calibration, e is equal to the error (E_u/E_i) calculated by Equation 7-23 and Equation 7-24:

$$E_{U} = \frac{U_{1} - U_{n}}{U_{n}}$$

Equation 7-23

$$E_i = \frac{I_1 - I_b}{I_b}$$

Equation 7-24

Where, U_1/I_1 is the voltage/current RMS displayed on the LCD screen of the meter to be calibrated, U_n is the rated voltage, and I_b is the base current.

7. Equation for power offset calibration registers

$$C = -E \times P \times a\%$$

Equation 7-25

Where, E is the error calculated by Equation 7-26 when a%I_b are applied at power factor 1.0; and P is value calculated via Equation 7-18.

7.9.3. Calibration Steps

7.9.3.1. Parameters Configuration

Users must configure the following parameters when designing an energy meter:

- Parameters for a meter, including basic current, and rated voltage
- Parameters for design, including the current and voltage RMS when rated current and rated voltage are applied
- The analog PGA gains of the current and voltage channels
- The ratio (D) of RMS and power calculated via Equation 7-20.

7.9.3.2. Calibrating Power

The step of getting the gain calibration value of the power data (E):

- 1. Read the Pn displayed on the LCD screen of the calibration equipment.
- 2. Read the power data P_1 from the meter LCD (P_1 is the product of the value of the average power data register and the power data scale coefficient D).
- 3. Calculate the gain calibration value of the power data according to the following method

$$E_{P} = \frac{P_{1} - P_{n}}{P_{n}}$$

Equation 7-26

1. Gain calibration (Take total active power for example)

For example, at power fact of 1.0, apply 100% Ib and 100% Un to the calibration equipment.

Get the gain calibration value of the power data (E) calculated by Equation 7-26, and read the value of the gain calibration register WAPT (0x012E), (the raw value for gain calibration, S_1) and then calculate the

value for gain calibration via Equation 7-22 and write it to the register WAPT (0x012E).

2. Phase compensation

After completing the power gain calibration, in the case of PF = 0.5L, apply 100% Ib and 100% Un to the calibration equipment for the phase calibration.

During the gain calibration, "bit[15:8]" of register "MTPARA1" (0x0184) must be cleared first. Get the gain calibration value of the power data (*E*) calculated by Equation 7-26, calibrate the values of phase compensation according to Equation 7-21, and write to the corresponding bit of the register.

3. Power offset calibration (optional)

PF = 1.0, 5% Ib (usually, 2% Ib) and 100% Un are applied to the calibration equipment. Get the gain calibration value of the power data (E) calculated by Equation 7-26. The offset calibration values calculated according to Equation 7-25 must be written into the corresponding power offset calibration register.

7.9.3.3. Calibrating Current RMS

- 1. Clear the registers "WARTI" (0x012C) or "WBRTI" (0x0126).
- 2. Apply 100%I_b to the calibration equipment at power factor 1.0.
- 3. Read the current RMS "**I**₁" shown on the LCD screen of the calibration equipment ("**I**₁" is the product of the value of RMS registers and the coefficient "**D**").
- 4. Calculate the value to gain calibrate current RMS via Equation 7-22.

Note: When the current through the energy meter is less than the starting current, the current RMS "I1" will not be shown on the LCD screen.

7.9.3.4. Calibrating Voltage RMS

- 1. Clear the registers "WARTU" (0x0132) or "WBRTU" (0x012B)
- 2. Apply 100%Un to the calibration equipment
- 3. Read the voltage RMS "U₁" shown on the LCD screen of the calibration equipment ("U₁" is the product of the value of RMS registers and the coefficient "D").
- 4. Calculate the value to gain calibrate voltage RMS via Equation 7-22.

8.Interrupt

In V9260F, eight kinds of events can trigger the interrupt signals, which will set the flag bits to "1 s". When the interrupt output is enabled, the pin "INT" will output the interrupt pulse according to the configuration to warn the master MCU.

- System control register self-check interrupt: Interrupt output cannot be masked.
- Configuration verification interrupt: Interrupt output cannot be masked.
- **Zero-crossing interrupt**: The voltage sign bit is output as the zero-crossing interrupt; interrupt output can be masked.
- **Current detection interrupt**: Interrupt output cannot be masked in the Current Detection Mode, and can be masked in other operation modes.
- Power down interrupt: Interrupt output can be masked. Please refer to "Power Supply Monitoring Circuit" for more detailed information.
- WDT overflow reset interrupt: Interrupt output can be masked. Please refer to "WDT Overflow Reset" for more detailed information.
- External crystal failure interrupt: Interrupt output can be masked. Please refer to "Crystal Oscillation Circuit" for more detailed information.
- REF capacitor damage alarm interrupt: Interrupt output can be masked.

The interrupt management circuit keeps on working until it is powered off.

8.1. System Control Register Self-Checking Interrupt

In V9260F, "bit[8:0]" of the register "SysCtrl" (0x0180) are used for the key configuration for the system operation mode, and "bit[24:16]" are designed as the backup of these bits. Invert the values of "bit[8:0]", and write them into "bit[24:16]" sequentially. The internal self-checking circuit compares the content of these bits all the time. If they are opposite to each other sequentially, it indicates the configurations are right; otherwise, an interrupt signal will be triggered, the flag bit "SYSERR" (bit20 of SysCtrl, 0x0180) is set to '1', and the "INT" pin outputs the high logic to warn the master MCU that something wrong with these configurations. The flag bit holds the state until the self-checking is corrected.

This interrupt output cannot be masked.

In the Default State, the pin "INT" always output the high logic to indicate something wrong with the configurations.

8.2. Configuration Verification Interrupt

The register "CKSUM" should be written of the difference between "OxFFFFFFF" and the sum of the content of the other 24 registers.

In the Default State, the pin "INT" always output high logic to indicate something wrong with the configurations.

Table 8-1 Registers for Configuration Verification

No.	Address	Register	x	R/W	Default Value
1	0x0123	ZZDCI	To preset the bias for the direct current	R/W	0
2	0x0124	ZZDCU	To preset the bias for the direct voltage	R/W	0
3	0x0125	BPPARA	To set the coefficient of the bandpass filter	R/W	0
4	0x0126	WBRTI	To set the gain calibration of the fundamental current RMS	R/W	0
5	0x0127	WBPT	To set the gain calibration of the fundamental active power	R/W	0
6	0x0128	WWBPT	To set the offset calibration of the fundamental active power	R/W	0
7	0x0129	WBQT	To set the gain calibration of the fundamental reactive power	R/W	0
8	0x012A	WWBQT	To set the offset calibration of the fundamental reactive power	R/W	0
9	0x012B	WBRTU	To set the gain calibration of the fundamental voltage RMS	R/W	0
10	0x012C	WARTI	To set the gain calibration of the total current RMS	R/W	0

No.	Address	Register		R/W	Default Value
11	0x012D		It is recommended to write of Os.	R/W	0
12	0x012E	WAPT	To set the gain calibration of the total active power	R/W	0
13	0x012F	WWAPT	To set the offset calibration of the total active power	R/W	0
14	0x0130	WAQT	To set the gain calibration of the total reactive power	R/W	0
15	0x0131	WWAQT	To set the offset calibration of the total reactive power	R/W	0
16	0x0132	WARTU	To set the gain calibration of the total voltage RMS	R/W	0
17	0x0134	IDETTH	To set the threshold for current detection	R/W	0
18~19	0x0181~0x0182		It is recommended to write of Os.	R/W	0
20	0x0183	MTPARAO	Metering control register 0	R/W	0
21	0x0184	MTPARA1	Metering control register 1	R/W	0x400000
22	0x0185	ANCtrlO	Analog Control Register 0	R/W	0x20000000
23	0x0186	ANCtrl1	Analog Control Register 1	R/W	0
24	0x0187	ANCtrl2	Analog Control Register 2	R/W	0
25	0x0133	CKSUM	Checksum register	R/W	0

8.3. Zero-Crossing Interrupt

V9260F supports the voltage zero-crossing interrupt.

When the voltage signal crosses the zero point, a zero-crossing interrupt will be triggered, the sign bit "USIGN" (bit17 of SysCtrl) will toggle according to the voltage signal.

When the voltage sign output is enabled (Setting IESUL, bit1 of SysCtrl, to '1'), the pin "INT" will output the voltage sign when the voltage signal crosses the zero point, and the logic will toggle following the signal transition. The "INT" outputs the high logic for the negative voltage signal, and it turns to the low logic for the positive voltage signal.

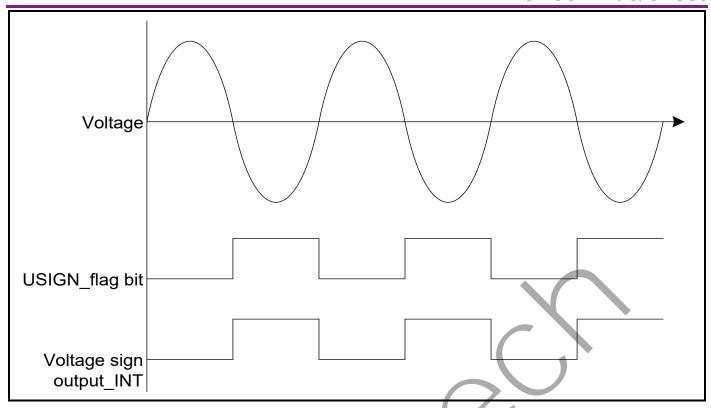


Figure 8-1 Zero-Crossing Interrupt

8.4. Current Detection Interrupt

V9260F integrates a current detection circuit, and supports the current detection interrupt.

Set the bit "IDETEN" (bit12 of MTPARAO, 0x0183) to '1' to enable the current detection. The detection circuit will compare the preset threshold for the current detection (IDETTH, 0x0134, R/W) with the absolute value of the current signal, from which the DC component introduced by the external components and internal ADCs has been removed. Equation 8-1 depicts the signal processing:

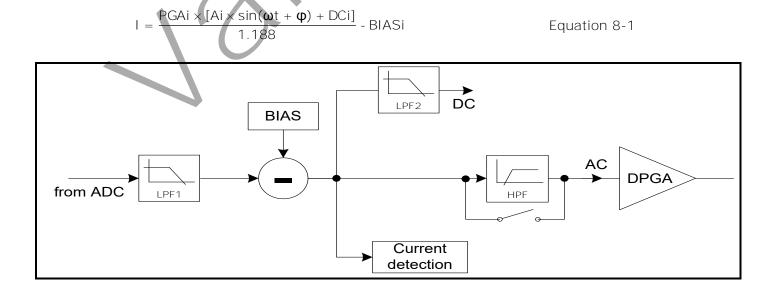
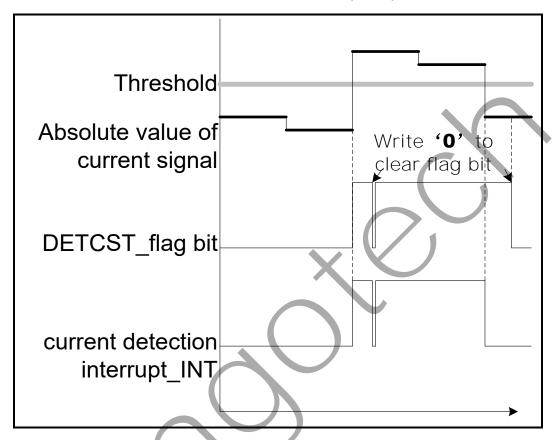



Figure 8-2 Signal Processing for Current Detection

Configure the window width for the current detection via the bit "IDETLEN" (bit[11:8], MTPARAO, 0x0183). For instance, if the window width is set to '4', it means only when four continuous samples of the current signal is higher than the threshold can the current signal be strong enough for the measurement and can a current detection interrupt signal be triggered. The interrupt signal will set the flag bit "DETCST" (bit18, SysCtrl) to '1', which can be cleared by writing '0' when the absolute value of the current signal is lower than the threshold. If the current detection interrupt output is enabled (Setting IDIDET, bit2 of SysCtrl, to '1'), the pin "INT" will output the logic high and holds its state till the current signal is lower than the threshold. In the Current Detection Mode, this interrupt output cannot be masked.

Figure 8-3 Current Detection Interrupt

8.5. Registers

Table 8-2 Interrupt Output Enable Bits

Register	Bit	Default	Description
	Bit6		To enable REF capacitor damage alarm interrupt output.
	IEREF	О	1: Enabled; 0: mask
0x0183 MTPARAO	Bit5	0	To enable WDT overflow interrupt output 1: Enable 0: Mask
	Bit4	0	To enable external crystal failure interrupt output 1: Enable

Register	Bit	Default	Description
			0: Mask
			To enable power-down interrupt output
	Bit3	0	1: Enable
	IEPDN		0: Mask
			To enable current detection interrupt output
	Bit2	0	1: Enable
	IEIDET		0: Mask
			To enable voltage sign output
	Bit1	0	1: Enable
	IESUL		O: Mask

Table 8-3 Interrupt Flag Bits

Register	Bit	R/W	Description
	Bit28	R	Power-down interrupt flag bit When the input voltage on the pin "AVCC" is lower than 2.8 V, this bit will be set to '1'. When the input is higher than 2.8 V, this bit will be cleared.
0x0180 SysCtrl	Bit27 HSEFAIL Bit[26: 24] RSTSRC	R	External crystal failure interrupt flag bit When the external crystal stops running, this bit will be set bit and hold the state till the crystal starts to oscillate again. When the crystal stops running, the UART serial interface will be sourced by the 3.2-MHz RC clock, "CLK2", that is not accurate enough for the UART communication, so the master MCU cannot read the value of this bit to detect the state of the crystal. In this circumstance, users should enable the external crystal failure interrupt output on the pin "INT" to help to detect the state of the crystal. "Bit[26:25]" is read only, and "bit24" is readable and writable. Read of "bit24" together with "bit[26:25]" to detect the reset source When these bits are read as "0b000", the WDT overflow interrupt occurs. Invert the value of "bit8" of "SysCtrl" and write it to "bit24" for the system control register self-checking.
	Bit23 Reserved	R/W	The reading remains '0'. Invert the value of "bit7" of "SysCtrl" and write it to "bit23" for the system control register self-checking.
allin	Bit22	R/W	The latch of "PDN". When the reset occurs, it will be '0'. After the reset, the value will be determined by the working environment.

Register	Bit	R/W	Description
	PDN_R		If "PDN" is high, "PDN_R" will be put to high.
	_		If "PDN" is low, "PDN_R" will remain the same.
			If performing the write operation to "0x180", no matter what data is written into, "PDN_R" will be put to low.
			Invert the value of "bit6" of "SysCtrl" and write it to "bit22" for the system control register self-checking.
	Bit21		When the leakage occurs in the external capacitor of "REF", this bit will be set to high. Otherwise, this bit will be set to low. The level of this bit will not be changed by the read/write operation.
	REF	R/W	The default value is relevant to the working environment.
			Invert the value of "bit5" of "SysCtrl" and write it to "bit21" for the system control register self-checking.
			Read this flag bit for the state of the system control register self-checking
	Bit20 SYSERR	R/W	By default it is read out as '1'. If the values of "bit[8:0]" and "bit[24:16]" are opposite to each other bit by bit, the system control register self-checking will pass, and this bit will be read out as '0'; otherwise, the self-checking will fail, and this bit will be read out as '1'. Only writing the exact opposite values of "bit[8:0]" to "bit[24:16]" can clear this bit. Invert the value of "bit4" of "SysCtrl" and write it to "bit20" for the system control register self-checking.
	Bit19 CHKERR	R/W	Read this bit for the state of configuration verification Add the content of the registers for calibration, metering control registers, analog control registers, and three reserved internal registers to the content of the checksum register to ensure that all the important configurations are in their desired states. If the sum is "OxFFFFFFFF", the verification will pass, and this bit will be read out as '0'; otherwise, the verification will fail, and this bit will be read out as '1'. Invert the value of "bit3" of "SysCtrl" and write it to "bit19" for the system control register self-checking.
	Bit18 DETCST	R/W	Current detection interrupt flag bit When some continuous samples of the current signal are higher than the preset threshold, this bit will be set to '1' to indicate that a current signal is caught. This bit can be cleared only by writing '0' to it when the current samples are lower than the threshold.
			Invert the value of "bit2" of "SysCtrl" and write it to "bit18" for the system control register self-checking.
	Bit17	R/W	Voltage sign bit

Register	Bit	R/W	Description
	USIGN		1: Negative
			0: Positive
			Read this bit to detect the sign of the voltage.
			This bit toggles following the sign of the voltage.
			Invert the value of "bit1" of "SysCtrl" and write it to "bit17" for the
			system control register self-checking.

9. Registers

9.1. Analog Control Registers

All analog control registers of V9260F, located at addresses "Ox0185" ~ "Ox0187", will be reset to their default values when a Power-On Reset (POR), RX reset, or global software reset occurs. All the default values in the following tables are in the format of hexadecimal. All analog control registers are readable and writable. Their configurations must be verified all the time.

The register "ANCtrl1" located at address "0x0186" must be set to "0x30000000" for proper operation.

Table 9-1 Analog Control Register 0 (ANCtrl0, 0x0185)

0x0185, R	0x0185, R/W, Analog Control Register 0, ANCtrl0						
Bit		Default	Function Description				
Bit[31:30]	Reserved	0	These bits must hold their default values for proper operation.				
Bit29	PDRCCLK	N/A	Clear this bit to enable the 3.2-MHz RC Clock. It is mandatory to enable the Bandgap circuit and biasing circuit firstly. The value of the bit is uncertain when the system is reset. In the Sleep Mode, this bit is set to '1' automatically. In the Current Detection Mode, this bit is cleared automatically. In the Metering Mode, when the chip operates with full functions, it is recommended to disable this circuit (Set the bit to '1').				
Bit28	BIASPDN	0	Set this bit to '1' to enable the biasing circuit to provide global biasing current for ADCs and the 3.2-MHz RC oscillator. Therefore, in the Metering Mode, when the chip operates with full functions, this bit must be set to '1' before enabling ADCs and the 3.2-MHz RC oscillator. By default the biasing circuit is disabled. In the Sleep Mode, this bit is cleared automatically. In the Current Detection Mode, this bit is set to '1' automatically.				
Bit27	BGPPDN	0	Set this bit to '1' to enable the Bandgap circuit to provide ADCs and the 3.2-MHz RC oscillator with reference voltage and biasing voltage. Therefore, in the Metering Mode, when the chip operates with full functions, this bit must be set to '1' before enabling ADCs and the 3.2-MHz RC oscillator. By default the Bandgap circuit is disabled.				

0x0185, R	0x0185, R/W, Analog Control Register 0, ANCtrl0						
Bit		Default	Function Description				
			In the Sleep Mode, this bit is cleared automatically. In the Current Detection Mode, this bit is set to '1' automatically.				
			Set this bit to '1' to enable Voltage Channel ADC. The Bandgap circuit must be enabled before this ADC.				
Bit26	ADCUPDN	0	Both in the Sleep Mode and in the Current Detection Mode, this bit is cleared automatically.				
Bit25	Reserved	0	This bit must hold its default value for proper operation.				
DitO	ADCIDON	0	Set this bit to '1' to enable Current Channel ADC. The Bandgap circuit must be enabled before this ADC.				
Bit24	ADCIPDN	0	In the Sleep Mode, this bit is cleared automatically. In the Current Detection Mode, this bit is set to '1' automatically.				
Bit[23:22]	Reserved	0	These bits must hold their default values for proper operation.				
Bit21	XRSTEN	Set this bit to '1' to enable the function of stimulating external crystal when it stops running. By default this funis disabled. On the Metering Mode, when the chip operates with functions, it is recommended to enable this function for					
Bit20	XTALPD	0	Set this bit to '1' to disable the crystal oscillation circuit. By default this circuit is enabled. In the Metering Mode, when the chip operates with full functions, this bit will be set to '1' when the external crystal stops running, but it will be cleared automatically when the crystal restores running. Both in the Sleep Mode and in the Current Detection Mode, this				
Bit19	XTAL3P2M	0	When a 3.2768-MHz external crystal is used, this bit must be set to '1' to disable the 1/2 divider in the crystal oscillation circuit. When a 6.5536-MHz crystal is used, this bit must be cleared to enable the 1/2 divider.				
Bit18	XTALLP	0	When a 3.2768-MHz crystal is used, it is mandatory to set this bit to '1' to lower the power dissipation of the crystal oscillation circuit to a half. When a 6.5536-MHz crystal is used, this bit must hold its				

0x0185, R	/W, Analog Contr	ol Registo	er 0, ANCtri0
Bit		Default	Function Description
			default value.
			To select the sampling frequency of the oversampling ADC (ADC clock, ADCCLK). The sampling frequency of ADCs must be a quarter or one eighth of the metering clock (MEACLK) frequency when the chip operates with full functions in the Metering Mode.
			00: 819.2 kHz
			01: 409.6 kHz
Bit[17:16]	ADCLKSEL<1:0>	0	10: 204.8 kHz
			11: 102.4 kHz
			In the Current Detection Mode, these bits must be set to "Ob10" to lower the power dissipation.
			When the chip operates with full functions in the Metering Mode, their default values are recommended to be used for the best performance.
Bit15	Reserved	0	This bit must hold its default value for proper operation.
			To finely adjust the temperature coefficient of the Bandgap circuit. In order to obtain the best metering performance and temperature performance during normal metering, it must be configured according to the calculated result. The calculation method, please refer to Bandgap Circuit chapter.
			000: No adjustment
	\ ' (001: +10 ppm
Bit[14:12]	REST<2:0>		010: +20 ppm
			011: +30 ppm
			100: -40 ppm
			101: -30 ppm
			110: -20 ppm
			111: -10 ppm
			To adjust the global bias current
Bit[11:10]	IT<1:0>	0	00: No adjustment
			01: by -33%

	R/W, Analog Cont		
Bit		Default	Function Description
			10: by -66%
			11: by -75%
			In the Current Detection Mode, it is recommended to set these bits to "Ob10" and lower the "ADCCLK" frequency to 204.8 kHz to accelerate the detection.
			When the chip operates with full functions in the Metering Mode, it is recommended to set these bits to "Ob01" for the best performance.
DW10 01			To roughly adjust the temperature coefficient of the Bandgap circuit. In order to obtain the best metering performance and temperature performance during normal metering, it must be configured according to the calculated result. The calculation method, please refer to Bandgap Circuit chapter.
Bit[9:8]	RESTL<1:0>	0	00: No adjustment
			01: +70 ppm
			10: -140 ppm
			11: -70 ppm
			To set analog PGA gain of analog input of Voltage Channel ADC
Bit7	GU	0	0: ×4 (Recommended)
			1: ×1
Bit6	Reserved	0	This bit must be set to '1' for proper operation.
Bit[5:2]	Reserved	0	These bits must hold their default values for proper operation.
	GI < 1:0>		To set analog PGA gain of analog input of Current Channel ADC. The analog PGA gain is determined by the output signal of the sensor. The product of the output signal and PGA gain (Both analog and digital) must be no more than the voltage reference.
Bit[1:0]		0	00: ×32;
			01: ×16
			10: ×4
			11: ×1

Table 9-2 Analog Control Register 2 (ANCtrl2, 0x0187)

0x0187, R	/W, Analog Cont	rol Regis	ter 2, ANCtrl2
Bit		Default	Function Description
Bit[31:30]	Reserved	0	These bits must hold their default values for proper operation.
			To adjust the 3.2-MHz RC clock cycle. The resolution is 1% per LSB. When these bits are in their default state, no adjustment is applied.
Bit[29: 24]	RCTRIM<5:0>	0	From "Ob00000" to "Ob100000", the RC clock cycle is decreased by 1% per LSB; from "Ob100001" ~ "Ob111111", the RC clock cycle is increased by 1% per LSB. When the chip operates with full functions in the Metering Mode, it is recommended to hold their default values for the best performance.
Bit[23: 20]	Reserved	0	These bits must hold their default values for proper operation.
Bit19	XRSEL<1>	0	To adjust the negative resistance of the crystal oscillator It is not recommended to set this bit to '1' that will lead to additional 18-µA load current.
Bit18	XRSEL<0>	0	To adjust the negative resistance of the crystal oscillator When the equivalent series resistance of the crystal is higher than 60 Ω , it is recommended to set this bit to '1' that will lead to additional 55- μ A load current.
Bit[17:16]	XCSEL<1:0>	0	To adjust the load capacitance of the crystal oscillator By default the load capacitance is 12 pF. O0: No adjustment O1: +2 pF 10: +4 pF 11: +6 pF
Bit15	Reserved	0	This bit must hold its default value for proper operation.
Bit[14:12]	LDOVSEL<2:0>	0	To adjust the DVCCLDO output voltage 000: No adjustment 001: -0.1 V 010: +0.2 V 011: +0.1 V 100: -0.4 V

0x0187, R	R/W, Analog Control Register 2, ANCtrl2					
Bit		Default	Function Description			
			101: -0.5 V			
			110: -0.2 V			
			111: -0.3 V			
Bit11	Reserved	0	This bit must hold its default value for proper operation.			
Bit10	SHORTU	0	When a DC voltage signal is applied to Voltage Channel, it is recommended to set this bit to '1' to short the amplifier in the voltage channel to obtain the bias voltage of ADC itself. By default this function is disabled.			
Bit9	Reserved	0	This bit must hold its default value for proper operation.			
Bit8	SHORTI	0	When a DC current signal is applied to Current Channel, it is recommended to set this bit to '1' to short the amplifier in the current channel to obtain the bias current of ADC itself. By default this function is disabled.			
Bit[7:0]	Reserved	0	These bits must hold their default values for proper operation.			

9.2. System Control Register

When a Power-On Reset (POR), RX reset or global software reset occurs, the system control register will be reset to its default state. If not specifically noted, the default values in the tables of this section are in the format of hexadecimal.

In V9260F, "bit[8:0]" of register "SysCtrl" (0x0180) are used for key configuration for the operation mode, and "bit[24:16]" are designed as the backup of their configurations. Invert the values of "bit[8:0]", and write them into "bit[24:16]" sequentially. The internal self-checking circuit compares the content of both parts all the time. If they are opposite to each other bit by bit, it indicates the configurations are right; otherwise, an interrupt signal will be triggered, flag bit "SYSERR" (bit20 of SysCtrl) is set to '1', and "INT" pin outputs the high logic to warn the master MCU that something wrong with these configurations.

Table 9-3 System Control Register (0x0180, SysCtrl)

0x0180, System Control Register, SysCtrl					
Bit R/W Default		Default	Function Description		
Bit[31:30]	Bit[31:30] Reserved R 0		0	These bits are read out as 0s.	

0x0180, S	ystem Con	trol Re	gister, S	rsCtrl			V9200F Datasileet
Bit	•	R/W	Default	Function I	Descri	ption	
Bit29	BISTERR	R	0	The internal RAM will be self-checked immediately once a global reset event occurs. The self-checking will be finished in 1.25 ms. After the self-checking, If this bit is read out as '1', it indicates that the self-checking of the internal RAM fails. If this bit is read out as '0', it indicates that the internal RAM is ready to be accessed; but if this bit is read out as '1' again after another reset event, it indicates that there is something wrong with RAM.			
				Power-dow	n inter	rupt fla	ag bit
Bit28	PDN	R	0		l be se	t to `1 '	on the pin "AVCC" is lower than 2.8 V,
				External cr	ystal fa	ailure i	nterrupt flag bit
						-	al stops running, this bit will be set bit e crystal starts to oscillate again.
Bit27	HSEFAIL	R	0	When the crystal stops running, the UART serial interface is sourced by the 3.2-MHz RC clock, "CLK2", that is not accurate enough for the UART communication, so the master MCU cannot read the value of this bit to detect the state of the crystal. In this circumstance, users should enable the external crystal failure interrupt output on pin "INT" to help to detect the state of the crystal.			
				Flag bits to	indica	ite the	reset source
				Bit26 B	it25	Bit24	Description
Bit[26:25]		R		0 0		1	A POR event occurred.
				0 0		0	A WDT overflow event occurred.
	RSTSRC			0 1		1	An RX reset event occurred.
	KSISKC			0 1		0	
				1 0		0	A global software reset occurred.
Bit24		R/W		Read of "reset sour		" toge	ther with "bit[26:25]" to detect the
							8" of "SysCtrl" and write it to "bit24" register self-checking.
bit23	Reserved	R/W	0	The reading	g rema	ins ' 0'.	
							7" of "SysCtrl" and write it to "bit23" egister self-checking.

0x0180,	System Con	trol Re	egister, Sv	/sCtrl
Bit	•	R/W	Default	
bit22	PDN_R	R/W	N/A	The latch of "PDN". When the reset occurs, it will be '0'. After the reset, the value will be determined by the working environment.
				If "PDN" is high, "PDN_R" will be put to high.
				If "PDN" is low, "PDN_R" will remain the same.
				If performing the write operation to "0x180", no matter what data is written into, "PDN_R" will be put to low.
				Invert the value of "bit6" of "SysCtrl" and write it to "bit22" for the system control register self-checking.
bit21	REF	R/W	N/A	When the leakage occurs in the external capacitor of "REF", this bit will be set to high. Otherwise, this bit will be set to low. The level of this bit will not be changed by the read/write operation.
				The default value is relevant to the working environment.
				Invert the value of "bit5" of "SysCtrl" and write it to "bit21" for the system control register self-checking.
				Read this flag bit for the state of the system control register self-checking.
Bit20	SYSERR	R/W	1	By default it is read out as '1'. If the values of "bit[8:0]" and "bit[24:16]" are opposite to each other bit by bit, the system control register self-checking will pass, and this bit will be read out as '0'; otherwise, the self-checking will fail, and this bit will be read out as '1'. Only writing the exact opposite values of "bit[8:0]" to "bit[24:16]" can clear this bit.
			\	Invert the value of "bit4" of "SysCtrl" and write it to "bit20" for the system control register self-checking.
				Read this bit for the state of configuration verification
Bit19	CHKERR	R/W	0	Add the content of the registers for calibration, metering control registers, analog control registers, and three reserved internal registers to the content of the checksum register to ensure that all the important configurations are in their desired states. If the sum is "OxFFFFFFFF", the verification will pass, and this bit will be read out as '0'; otherwise, the verification will fail, and this bit will be read out as '1'.
				Invert the value of "bit3" of "SysCtrl" and write it to "bit19" for the system control register self-checking.

0x0180, System Control Register, SysCtrl							
Bit		R/W	Default	Function Description			
				Current detection interrupt flag bit			
Bit18	DETCST	R/W	0	When some continuous samples of the current signal are higher than the preset threshold, this bit will be set to '1' to indicate that a current signal is caught. This bit can be cleared only by writing '0' to it when the current samples are lower than the threshold.			
				Invert the value of "bit2" of "SysCtrl" and write it to "bit18" for the system control register self-checking.			
Bit17	USIGN	R/W	0	Voltage sign bit 1: Negative 0: Positive Read this bit to detect the sign of the voltage. This bit toggles following the sign of the voltage. Invert the value of "bit1" of "SysCtrl" and write it to "bit17" for the system control register self-checking.			
Bit16	Reserved	R/W	0	It is meaningless to read of this bit. Invert the value of "bit0" of "SysCtrl" and write it to "bit16" for the system control register self-checking.			
Bit[15:9]	Reserved	R	0	These bits are read out as 0s.			
Bit[8:5]	Reserved	R/W	0	By default these bits are read out as 0s. These bits are writable, but it is meaningless to write of them. Invert the values of these bits and write them to "bit[24:21]" for the system control register self-checking.			

0x0180, 9	System Con	trol Re	gister, Sy	/sCtrl
Bit		R/W	Default	Function Description
Bit[4:2]	CKUDIV	R/W	1	To set the baud rate for UART communication, in unit of "bps" 000: 1200 001: 2400 010: 4800 011: 9600 100: 19200 101: 38400 Note: When a 3.2768-MHz crystal is used, after Power-On Reset (POR) RX reset or global software reset, the actual baud rate is a half of the desired baud rate. In this case, users must set the bit "XTAL3P2M" (bit19 of ANCtrlo, 0x0185) to '1' to disable the 1/2 divider to generate 3.2768-MHz "CLK1" to source the UART interface. After the WDT overflow reset, the baud rate is reset to 2400 bps, but these bits holds their configurations. Invert the values of these bits and write them to "bit[20:18]" for the system control register self-checking.
Bit1	CKMDIV	R/W	0	To select the clock frequency for the Vango metering architecture (MEACLK) 1: 819.2 kHz 0: 3.2768 MHz Invert the value of this bit and write it to "bit17" for the system control register self-checking.
BitO	SLEEP	R/W	0	Set this bit to '1' to disable "CLK1" and "CLK2" and force the system to enter the Sleep Mode. Invert the value of this bit and write it to "bit16" for the system control register self-checking.

9.3. Metering Control Registers

All metering control registers, located at addresses "0x0183" and "0x0184", will be reset to their default values when a power-on reset, RX reset, or global software reset occurs. If not specifically noted, the default values in the following tables are in the format of hexadecimal. All metering control registers are readable and writable. Their configurations must be verified all the time.

Table 9-4 Metering Control Register 0 (0x0183, MTPARA0)

0x0183, R	/W, Meter	ing Contr	ol Register 0, MTPARA0
Bit		Default	Function Description
Bit[31:18]	Reserved	0	These bits must hold their default values for proper operation.
			To set the interval for WDT overflow reset (T). T is calculated via the equation $T = \frac{2^{WDT}}{f_{CLK3}}$, of which,
Bit[17:15]	WDT	0	• WDT is the value of bit[17:15]. 000: 16; 001: 17; 010: 18; 011: 19; 100: 20; 101: 21; 110: 22; 111: 23.
ыц 17. 13]	VVDT	O	• f _{CLK3} is the actual "CLK3" frequency. In practice, 32768Hz is taken to calculate the interval (T). But there is an error of ±50% of the "CLK3" frequency, so it is recommended to feed dog at interval of
			$\frac{T}{2}$ to prevent the UART serial interface from being reset by the WDT overflow.
Bit[14:13]	BPFSFT	0	To set the number of the bits of the bandpass filter to be shifted 00: 8 bits 01: 9 bits 10: 10 bits 11: 11 bits The fewer bits are shifted, the less time the filter needs to response, and the lower sensitivity of it to the frequency deviation is.
Bit12	IDETEN	0	To enable current detection 1: Enable 0: Disable
Bit[11:8]	IDETLEN	0	To set the width of filtering window for current detection 0000: 1; 0001: 2; 0010: 3; 0011: 4; 0100: 5; 0101: 6; 0110: 7; 0111: 8; 1000: 9; 1001: 10; 1010: 11; 1011: 12; 1100: 13; 1101: 14; 1110: 15; 1111: 16. For instance, if "IDETLEN" is set to "Ob0011", the filtering window width is set to '4', which means only when four continuous current samples are higher than the threshold is it defined that a current signal is caught.
Bit[7:6]	Reserved	0	These bits must hold their default values for proper operation.

0x0183, R	0x0183, R/W, Metering Control Register 0, MTPARA0						
Bit	_	Default	Function Description				
			To enable WDT overflow interrupt output				
Bit5	IEWDT	0	1: Enable				
			0: Mask				
			To enable external crystal failure interrupt output				
Bit4	IEHSE	0	1: Enable				
			0: Mask				
			To enable power-down interrupt output				
Bit3	IEPDN	0	1: Enable				
			0: Mask				
			To enable current detection interrupt output				
Bit2	IEIDET	0	1: Enable				
			0: Mask				
			To enable voltage sign output				
Bit1	IESUL	0	1: Enable				
			0: Mask				
BitO	Reserved	0	This bit must hold its default value for proper operation.				

Table 9-5 Metering Control Register 1 (0x0184, MTPARA1)

0x0184, R/W, Metering Control Register 1, MTPARA1						
Bit Default			Function Description			
Bit[31:23]	Reserved	0	These bits must hold their default values for proper operation.			
Bit22	CKSUM	1	When this bit is set to '1' , only configuration verification will be activated. When this bit is cleared, all functions of the Vango metering architecture will be activated. In the Current Detection Mode, this bit is cleared automatically.			

0x0184, F	0x0184, R/W, Metering Control Register 1, MTPARA1						
Bit		Default	Function Description				
Bit21	IDET	0	When bit "CKSUM" (bit22) is cleared, set this to '1' to activate the configuration verification and current detection only; clear this bit to execute all computations.				
			In the Current Detection Mode, this bit is set to '1' automatically.				
Bit20	ВРНРЕ	0	By default the high pass filter is enabled to remove the DC component from the signals, and only the AC component of the signals are sent for RMS and power calculation.				
			When this bit is set to '1', the high pass filter is disabled.				
Bit19	ENPHC	0	Set this bit to '1' to enable phase compensation. By default this function is disabled.				
Bit18	PHCIU	0	Set this bit to '1' to delay voltage for the phase compensation. Clear this bit to delay current for phase compensation.				
Bit17	ONI	0	To enable digital signal input of current channel for digital signal processing 1: Enable 0: Disable. When this bit is cleared, a constant '0' is input for the digital signal processing.				
Bit16	ONU	0	To enable digital signal input of voltage channel for digital signal processing 1: Enable O: Disable When this bit is cleared, a constant '0' will be input for the digital signal processing.				
Bit[15:8]	PHC	0	To set the absolute value for phase compensation The resolution is 0.0055°/lsb, and a phase error up to 1.4° can be calibrated.				
		7	To set digital PGA gain of current input				
Bit[7:4]	PGAI	0	0000: ×1; 0001: ×1/2; 0010: ×1/4; 0011: ×1/8; 0100: ×1/16; 0101: ×1/32;				
			1000: ×1; 1001: ×2; 1010: ×4; 1011: ×8; 1100: ×16; 1101: ×32.				
			To set digital PGA gain of voltage input				
Bit[3:0]	PGAU	0	0000: ×1; 0001: ×1/2; 0010: ×1/4; 0011: ×1/8; 0100: ×1/16; 0101: ×1/32;				
			1000: ×1; 1001: ×2; 1010: ×4; 1011: ×8; 1100: ×16; 1101: ×32.				

9.4. Data Registers

When a Power-On Reset (POR), RX reset, or global software reset occurs, all data registers will be reset to their default states. If not specifically noted, all the default values in the following tables are in the format of hexadecimal.

Table 9-6 Registers for DC Component (R/W)

Register		R/W	Format	Description
0x0114	DCU	R/W	32-bit, 2'-complement	The DC component of voltage signal When the "MEACLK" frequency is 3.2768 MHz, this register will be updated in 160 ms, and settled in 300 ms. When the "MEACLK" frequency is 819.2 kHz, this register will be updated in 640 ms and settled in 1200 ms.
0x0115	DCI	R/W	32-bit, 2'-complement	The DC component of current signal When the "MEACLK" frequency is 3.2768 MHz, this register will be updated in 160 ms, and settled in 300 ms. When the "MEACLK" frequency is 819.2 kHz, this register will be updated in 640 ms and settled in 1200 ms.

Table 9-7 Registers for Line Frequency (R)

			Line Frequency			
Register		R/W	Format	Description		
0x019A	FREQ	R	32-bit, 2'-complement	The instantaneous line frequency When the "MEACLK" frequency is 3.2768 MHz, this register will be updated in 20 ms; when the "MEACLK" frequency is 819.2 kHz, this register will be updated in 80 ms. The settling time for the register is determined by the amplitude and quality of the signal.		
0x011D	SAFREQ	R	32-bit, 2'-complement	The line frequency per second When the "MEACLK" frequency is 3.2768 MHz, this register will be updated in 1.28 s; when the "MEACLK" frequency is 819.2 kHz, this register will be updated in 5.12 s. The settling time for the register is determined by the amplitude and quality of the signal.		
0x011E	AFREQ	R	32-bit, 2'-complement	The average line frequency When the "MEACLK" frequency is 3.2768 MHz, this register		

Registe	Register		Format	Description	
				will be updated in 10.24 s; when the "MEACLK" frequency is 819.2 kHz, this register is updated in 40.96 s. The settling time for the register is determined by the amplitude and quality of the signal.	

Table 9-8 Registers for RMS Values of Total/Fundamental Signals (R/W)

	Register R		Format	Description
0x0105	ARRTI	R/W	32-bit, 2'-complement	The raw total current RMS When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0104	ARRTU	R/W	32-bit, 2'-complement	The raw total voltage RMS When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0109	BRRTU	R/W	32-bit, 2'-complement	The raw fundamental voltage RMS When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x010A	BRRTI	R/W	32-bit, 21-complement	The raw fundamental current RMS When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x010E	ARTI	R/W	32-bit, 2'-complement	The instantaneous total current RMS When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.

Registe	•	R/W	Format	Description
				The instantaneous total voltage RMS
0x010D	ARTU	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
				The instantaneous fundamental voltage RMS
0x0112	BRTU	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
				The instantaneous fundamental current RMS
0x0113	BRTI	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
				The average total voltage RMS
0x011B	AARTU	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.
				The average total current RMS
0x011C	AARTI	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.
				The average fundamental voltage RMS
0x0121	ABRTU	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.
				The average fundamental current RMS
0x0122	ABRTI	R/W	32-bit, 2'-complement	When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.

Table 9-9 Total/Fundamental Active/Reactive Power Registers (R/W)

Register		R/W	Format	Description
0x0102	RAP	R/W	32-bit, 2'-complement	The raw total active power When the "MEACLK" frequency is 3.2768MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0103	RAQ	R/W	32-bit, 2'-complement	The raw total reactive power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0107	RBP	R/W	32-bit, 2'-complement	The raw fundamental active power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0108	RBQ	R/W	32-bit, 2'-complement	The raw fundamental reactive power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x010B	IAP	R/W	32-bit, 2'-complement	The instantaneous total active power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x010C	IAQ	R/W	32-bit, 2'-complement	The instantaneous total reactive power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.

Register		R/W	Format	Description
0x0110	IBP	R/W	32-bit, 2'-complement	The instantaneous fundamental active power When the "MEACLK" frequency is 3.2768MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0111	ΙΒQ	R/W	32-bit, 2'-complement	The instantaneous fundamental reactive power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 160 ms and settled in 500 ms. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 640 ms and settled in 2000 ms.
0x0119	AAP	R/W	32-bit, 2'-complement	The average total active power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.
0x011A	AAQ	R/W	32-bit, 2'-complement	The average total reactive power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.
0x011F	ABP	R/W	32-bit, 2'-complement	The average fundamental active power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.
0x0120	ABQ	R/W	32-bit, 2'-complement	The average fundamental reactive power When the "MEACLK" frequency is 3.2768 MHz, the register will be updated in 1.28 s and settled in 3 s. When the "MEACLK" frequency is 819.2 kHz, the register will be updated in 5.12 s and settled in 12 s.

9.5. Registers for Calibration

When a Power-On Reset (POR), RX reset, or global software reset occurs, all registers for calibration will be reset to their default states. If not specifically noted, all the default values in the following tables are in the format of hexadecimal. Their contents must be verified all the time.

Table 9-10 Registers for Presetting Bias for Direct Current/Voltage

Register		Default R/W Format		Format	Description	
0x0123	ZZDCI	0	R/W	32-bit 2'-complement	Preset a value to remove the DC bias from the current signal. The content of this register must be verified.	
0x0124	ZZDCU	0	R/W	32-bit 2'-complement	Preset a value to remove the DC bias from the voltage signal. The content of this register must be verified.	

Table 9-11 Registers for Calibrating Voltage/Current RMS (R/W)

rable 9	Table 9-11 Registers for Calibrating Voltage/Current RMS (R/W)								
Register		Default	efault R/W Format		Description				
0x012C	WARTI	0	R/W	32-bit, 2'-complement	Set a value to gain calibrate the total current RMS.	The actual value in the decimal form is acquired by dividing the register			
0x0132	WARTU	0	R/W	32-bit, 2'-complement	Set a value to gain calibrate the total voltage RMS.	reading by 2^31. The values of RMS before and after calibration have a relationship as			
0x0126	WBRTI	0	R/W	32-bit, 2'-complement	Set a value to gain calibrate the fundamental current RMS.	follows: RMS=RMS'×(1+S) Where,			
0x012B	WBRTU	0	R/W	32-bit, 2'-complement	Set a value to gain calibrate the fundamental voltage RMS.	RMS is the value of RMS after calibration; RMS' is the value of RMS before calibration; S is the gain calibration of RMS. The content of these registers must be verified.			

Table 9-12 Registers for Calibrating Active/Reactive Power (R/W)

	Tubic b == neglector for cambraining recursor, measure record (i.e., i.e.)							
Register		Default	R/W	Format	Description			
	0x012E	WAPT	0	R/W	32-bit 2'-complement	Set a value to gain calibrate the total active power.	The actual value in the decimal form is acquired by dividing the register reading	

Register		Default	R/W	Format	Description	
0x0130	WAQT	0	R/W	32-bit 2'-complement	Set a value to gain calibrate the total reactive power.	by 2^31. The values of power before and after calibration have a
0x012F	WWAPT	0	R/W	32-bit 2'-complement	Set a value to offset calibrate the total active power.	relationship as follows: P=P'x(1+S)+C Where,
0x0131	WWAQT	0	R/W	32-bit 2'-complement	Set a value to offset calibrate the total reactive power.	P is the active or reactive power after calibration; P' is the active or reactive power before calibration;
0x0127	WBPT	0	R/W	32-bit 2'-complement	Set a value to gain calibrate the fundamental active power.	S is the gain calibration of the power; C is the offset calibration of the power.
0x0129	WBQT	0	R/W	32-bit 2'-complement	Set a value to gain calibrate the fundamental reactive power.	The content of these registers must be verified.
0x0128	WWBPT	0	R/W	32-bit 2'-complement	Set a value to offset calibrate the fundamental active power.	
0x012A	WWBQT	0	R/W	32-bit 2'-complement	Set a value to offset calibrate the fundamental reactive power.	

Table 9-13 Threshold Register

	Lable 5 15 Till Conord Regiote.					
Register		Default	R/W	Format	Description	
0x0134	IDETTH	0	R/W	32-bit 2'-complement	Set a threshold for current detection When the current detection is enabled, the current detection circuit will compare the absolute value of the instantaneous current signal to the preset current detection threshold in this register. When some continuous samples of the current signal are higher than the threshold, it means a current signal is caught.	

Register		Default	R/W	Format	Description
					The content of this register must be verified.

Table 9-14 Register for Bandpass Filter Coefficient Configuration (0x0125, BPFPARA, R/W)

Register		Default	R/W	Format	Description
0x0125	BPFPARA	0	R/W	32-bit 2'-complement	Set the coefficient of the bandpass filter. Generally, it is set to "0x811D2BA7" for the best performance. This coefficient and the bits to be shifted in the bandpass filter have effect on the filter response time, the sensitivity to the frequency deviation, and the suppression on the harmonics and noise. The content of this register must be verified.

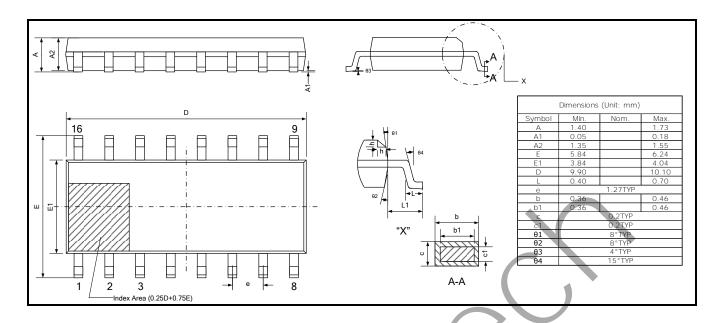

9.6. Checksum Register

Table 9-15 Checksum Register (0x0133, CKSUM, R/W)

Register		Default	R/W	Format	Description
0x0133 C	CKSUM	0	R/W	32-bit 2'-complement	Add the value of this register and other 24 registers (Including the metering control registers, analog control registers, registers for calibration, and three reserved internal registers, please refer to "Interrupt" for more detailed information) to compute the checksum for the configuration verification to ensure the configuration of all the registers are in the desired states. If the sum is "OxFFFFFFFF", the verification will pass. This register should be set to the difference of "OxFFFFFFFF" and the sum of the other 24 registers.

10. Outline Dimensions

