三相电能计量芯片

V9203

特点

• 计量精度高:

满足 IEC 62053-21:2020/IEC 62053-22:2020 和 IEC 62053-23:2020 的要求;

在 10000:1 的动态范围内, 全波/基波有功能量计量误差小于 0.1%

在 5000:1 的动态范围内, 全波/基波无功能量计量误差小于 0.1%

• 提供各种测量数据:

7 路电压/电流信号原始波形(22-bit), DMA 模式输出, 更新频率 6.4kHz

7 路电压/电流信号直流分量合相和各相全波/基波电压/电流有效值和有功/无功/视在功率/能量

零线电流有效值

频率/相位/功率因数

• 提供多种工作模式,除了正常工作模式外,还支持:

停电全失压预判断模式,判断阈值可设,此时芯片典型工作电流为1.65mA,响应时间小于20ms 电流有效值测量模式,此时芯片典型工作电流为5.1mA,响应时间小于135ms 深睡眠模式,芯片电源完全关断,此时芯片典型工作电流为0.2μA

• 支持软件校表:

支持分段角差校正(五段),调整范围是±2.8°

支持全波有功功率分段比差校正(三段)和二次补偿(offset 校正)

支持全波/基波无功功率和基波有功功率比差校正和二次补偿(offset 校正)

支持小信号加速校表

支持配置参数自动校验

- 支持 CT 和 di/dt 电流输入模式
- 支持三相三线/三相四线应用
- 3.3V 单电源输入,宽电压输入范围: 2.6V~3.6V
- 基准电压: 1.185V (10ppm/°C)

- 支持 **SPI** 接口
- 工作温度: -40~+85°C
- 存储温度: -55~+150°C
- 44 引脚 LQFP 封装

声明

杭州万高科技股份有限公司保留对本手册所涉及的产品及相关的技术信息进行补正或更新的权利。使用本手册时,请您从我们的销售渠道或登录公司网站 <u>http://www.vangotech.com</u> 获取最新信息。

目录

特点1
声明3
目录4
引脚分布图7
模拟性能参数11
计量性能参数12
极限参数
功耗
功能框图
第1章 寄存器列表
1.1 模拟控制寄存器 16 1.2 计量配置寄存器 22 1.2.1 计量控制寄存器 22 1.2.2 合相功率组合寄存器 28 1.2.3 高速 CF 脉冲来源选择寄存器 28 1.3 计量数据寄存器 32 1.3.1 直流分量寄存器 32 1.3.2 频率/相位寄存器 33 1.3.3 功率因数寄存器 33 1.3.4 电压/电流有效值寄存器 35 1.3.5 功率寄存器 35 1.3.6 普通能量累加和脉冲产生电路寄存器 45 1.4 校表参数寄存器 46 1.4.1 预设直流偏置值寄存器 46 1.4.2 角差校正寄存器 46 1.4.3 电压/电流有效值校正寄存器 46 1.4.4 功率校正寄存器 46 1.4.5 门眼值寄存器 46 1.4.4 功率校正寄存器 46 1.4.4 功率校正寄存器 47 1.4.5 订眼值寄存器 52 1.5 计量优态寄存器 53 1.6 中断寄存器 53 1.6 中断寄存器 54
第2章 复位
2.1 上电复位(POR) 58 2.2 RST 输入复位 58
第3章 时钟系统
3.1 RC 振荡器 59 3.2 晶体振荡器 59 3.2.1 OSC 时钟 60 3.2.2 时钟分频电路 60
第4章 系统状态61
第5章 发生 RST 低电平有效或 POR 复位时,系统中所有62

5.1	工作制	状态	. 62
第6章	模拟电路	路	. 64
6.1 6.2	浅睡! 深睡!	眠状态 眠状态	. 64 . 64
第7章	电源系线	统	. 65
7.1 7.2	数字 掉电!	电源电路 监测电路	. 65 . 65
第 8 章	带隙基准	准电压源电路(Bandgap)	. 66
第 9 章	SPI 打	接口	. 67
9.1	数据中	帧结构	. 67
9.2	与操作	/⊧	. 68
9.3	送探1 公本	[F 上,次法/它揭佐	. 69
9.4	徑亘_ 通信#	上一(八)()/ 与'採'[F	. 70
9.5	四旧3 CDI 5	蚁°化′、 ¹ 2	. 70
9.0	11 主他语	因口反位	71
2.7 第 10 音	中能;	间改业 〈	. / I 73
示 10 平 10 「	1 1 1 1 1		. 73
10.	I 剱1 7 由 I	跖仔间奋 ΚΑ Μ	. 75
10.3	3 模打	型/2001.05%目 54m/C	. 79
10.4	4 角刻	差校正	. 80
10.5	5 数	 字信号输入	. 83
10.0	6 信	号原始波形输出	. 84
10.7	7 直泊	流分量	. 88
10.8	8 数	字积分器	. 89
10.9	9 有刻	效值计算	. 89
	10.9.1	有效值计算	. 90
	10.9.2	有效值校正	. 90
10.	10 功道	率计算	. 91
	10.10.1	1 全波有功/尤功功率计算	. 92
	10.10.2	2	.93
10	10.10.: 11 →⊡⊐	3	. 94
10.	LL 1/比1 1つ THS	住	. 97
10.	IZ 功≏ 13 △→	半凶奴 / 昇 和功家 -	100
10.	10 13 1	11·00年17年	100
	10.13.2	2 合相视在功率计算	101
10.	14 能量	量累加和脉冲发生	102
	10.14.1	1 普通能量累加和脉冲发生电路	102
10.1	15 频	率测量	105
10.	16 相位	位测量	106
10.3	17 零组	线不平衡判断	106
10.3	18 过氧	零点判断	107
10.	19 全经	失压检测	107
10.2	20 芯/	片启动流程	108
10.2	21 三相	相三线应用	108
10.2	22 校著	表	109
	10.22.1	Ⅰ 仪衣派程	109
	10.22.2	2 仪衣相大公式	103
第11章	中断到	系统	113
11.	1 中国	断 0, 系统参数自检中断	113
11.2	2 中国	断 1~3, 过零点中断	120

11.3	中断 4~7, CF 脉冲中断	
11.4	中断 8~10, 全失压检测中断	
11.5	中断 11, 逆相序中断	
11.6	中断 12, SPI 通信异常中断	
11.7	中断 13, 掉电中断	
封装尺寸图,		
图索引		
表索引		
版本更新说明	明	

引脚分布图

下表"类型"一栏中, I=输入; O=输出; P=电源; G=地。

引脚编号	名称	类型	功能说明
1	DVCC	Р	数字电源电压输出。外部应连接一个由一个 10µF 和 0.1µF 去耦电容组成的 并联电路。
2	AVDD	Р	模拟 3.3V 电压输入
3	AVSS	G	模拟地输入
4~5	IAN, IAP	Ι	A 相电流通道(IA)信号输入
6~7	IBN, IBP	Ι	B相电流通道(IB)信号输入
8~9	ICN, ICP	Ι	C相电流通道(IC)信号输入
10~11	INN, INP	Ι	零线电流(IN)信号输入
12	BGIO	I/O	片上基准电压输出,应连接一个 1µF 的去耦电容。
13	UAP	Ι	A相电压通道(UA)信号 P 端输入
14	UBP	I	B相电压通道(UB)信号 P 端输入
15	UCP	I	C相电压通道(UC)信号 P 端输入
16	UN	I	三路电压信号 N 端输入
17	VDCIN	I	掉电监测输入。

V9203 数据手册

当该引脚上的输入电压高于 1.1V 时,表明当前系统供电正常; 当该引脚上的输入电压低于 1V 时,表明当前系统发生了掉电。 18 AVSS G 模拟地输入 19 DEEPSLEEP I 深睡眠使能。 持续输入高电平超过 4ms,系统进入深睡眠状态。 持续输入低电平超过 4ms,系统被唤醒,进入启动状态。 20 DFTEN I DFT 使能,高电平有效。为保证系统正常工作,这个引脚必须输入低电平。	引脚编号	名称	类型	功能说明			
当该引脚上的输入电压低于 1V 时,表明当前系统发生了掉电。 18 AVSS G 模拟地输入 19 DEEPSLEEP I 深睡眠使能。 19 DEEPSLEEP I 持续输入高电平超过 4ms,系统进入深睡眠状态。 19 DFTEN I DFT 使能,高电平超过 4ms,系统被唤醒,进入启动状态。				当该引脚上的输入电压高于 1.1V 时,表明当前系统供电正常;			
18 AVSS G 模拟地输入 19 DEEPSLEEP I 深睡眠使能。 19 DEEPSLEEP I 持续输入高电平超过 4ms,系统进入深睡眠状态。 19 DFTEN I DFT 使能,高电平超过 4ms,系统被唤醒,进入启动状态。				当该引脚上的输入电压低于 1V 时,表明当前系统发生了掉电。			
19 DEEPSLEEP I 深睡眠使能。 19 DEEPSLEEP I 持续输入高电平超过 4ms,系统进入深睡眠状态。 持续输入低电平超过 4ms,系统被唤醒,进入启动状态。 20 DFTEN I DFT 使能,高电平有效。为保证系统正常工作,这个引脚必须输入低电平。	18	AVSS	G	模拟地输入			
19 DEEPSLEEP I 持续输入高电平超过 4ms,系统进入深睡眠状态。 20 DFTEN I DFT 使能,高电平有效。为保证系统正常工作,这个引脚必须输入低电平。				深睡眠使能。			
20 DFTEN I DFT 使能,高电平有效。为保证系统正常工作,这个引脚必须输入低电平。	19	DEEPSLEEP	I	持续输入高电平超过 4ms,系统进入深睡眠状态。			
20 DFTEN I DFT 使能,高电平有效。为保证系统正常工作,这个引脚必须输入低电平。				持续输入低电平超过 4ms,系统被唤醒,进入启动状态。			
	20	DFTEN	I	DFT 使能,高电平有效。为保证系统正常工作,这个引脚必须输入低电平。			
21 TYPE I 为保证系统正常工作,这个引脚必须输入高电平。	21	ТҮРЕ	I	为保证系统正常工作,这个引脚必须输入高电平。			
22 CTO O 晶体振荡 芯片内部集成了振荡电路,内含 10pF 匹配电容(有效电容)。	22	СТО	0	晶体振荡 芯片内部集成了振荡电路,内含 10pF 匹配电容 (有效电容)。			
22 CIO 输出。 输出。 在片外连接低功耗的 13.1072MHz 晶体(负载容量约为 8pF)			Ŭ	输出。 在片外连接低功耗的 13.1072MHz 晶体(负载容量约为 8pF)			
时,晶体可直接连接入 CTO 和 CTI 引脚。	23	СТІ		时,晶体可直接连接入 CTO 和 CTI 引脚。			
23 CTI I 晶体振荡 在片外连接普通的高功耗晶体(负载容量约为18pF)时,应先在 (如) (如) (1) (1) (1)			I	晶体振荡 在片外连接普通的高功耗晶体(负载容量约为18pF)时,应先在			
电容后晶体振荡器的功耗升高约 36µA。				电容后晶体振荡器的功耗升高约 36µA。			
工作模式选择输入。				工作模式选择输入。			
当 PM0/PM1 的值被配置为:				当 PM0/PM1 的值被配置为:			
00: 浅睡眠(不推荐使用)。此时,模拟电路中仅有 RC 振荡器、晶体振荡器				00 : 浅睡眠(不推荐使用)。此时,模拟电路中仅有 RC 振荡器、晶体振荡器			
和数字电源电路工作,其余的均关闭;数字电路中仅时钟管理电路、复位电路				和数字电源电路工作,其余的均关闭;数字电路中仅时钟管理电路、复位电路			
和外部信号(引脚 PM0/PM1/RST/DFTEN 上的输入信号)滤波电路工作,其				和外部信号(引脚 PM0/PM1/RST/DFTEN 上的输入信号)滤波电路工作,其 金均进入休眠状态。数据存储器 RΔM 和寄存器的配置促结不变.			
示场近八怀矾状态。 数据存储器 KAM 和司存备的配直保持不义; 10. 停中会生压预判断描式 此时 横拟中欧山位方 PC 振荡器 具体振荡器				示场近八杯砥状芯。 数据任储备 KAF 和司任备的配直体持不交; 10. 停中全生压预判断措式 此时 横拟由败山权方 DC 振荡器 具体振荡器			
数字电源电路、三路电流通道ADC、时钟分频电路和电压基准电路(Bandgap)				数字电源电路、三路电流通道ADC、时钟分频电路和电压基准电路(Bandgap)			
24~25 PM0, PM1 I 开启,其余电路均关闭;数字电路中仅时钟管理电路、复位电路和外部信号(引	24~25	PM0, PM1	I	开启,其余电路均关闭;数字电路中仅时钟管理电路、复位电路和外部信号(引			
脚 PM0/PM1/RST/DFTEN 上的输入信号)滤波电路 、角差校正电路、抽取				脚 PM0/PM1/RST/DFTEN 上的输入信号)滤波电路 、角差校正电路、抽取			
滤波器、电流检测电路、中断系统和从机模式 SPI 接口开启,其它均进入休眠				滤波器、电流检测电路、中断系统和从机模式 SPI 接口开启,其它均进入休眠 状态(此时 SPI 接口无法正觉通讯) 田户可通过电流通道失压检测中断来			
判断电流信号是否足以进行电能计量;				小恋、此时, JFI 按口几公正帝迪讯力。用厂可通过电弧通道天压检测甲断米 判断电流信号是否足以进行电能计量;			
01: 电流有效值计量模式。此时,模拟电路中仅有 RC 振荡器、晶体振荡器、				01: 电流有效值计量模式。此时,模拟电路中仅有 RC 振荡器、晶体振荡器、			
数字电源电路、三路电流通道 ADC、时钟分频电路和基准电路(Bandgap)				数字电源电路、三路电流通道 ADC、时钟分频电路和基准电路(Bandgap)			
开启,其余电路均关闭;数字电路中仅时钟管理电路、复位电路和外部信号(引				开启,其余电路均关闭;数字电路中仅时钟管理电路、复位电路和外部信号(引			
				▶ PMU/PM1/RS1/DF1EN 上的输入信号) 滤波电路、角差校止电路、抽取滤 波器、全波/基波有效值/功率(有功/无功/视在)/功率因数计算电路、普通/			

引脚编号	名称	类型	功能说明				
			高速能量累加和脉冲发生电路、去直流电路、电流检测电路、频率/相位测量 电路、中断系统和 SPI 接口开启,其它均进入休眠状态。外部 MCU 通过 SPI 接口读取各相基波电流有效值;				
			1: 正常工作模式。此时,模拟电 中路均工作。除模拟控制寄存器 。	路根据模拟控制寄存器的配置工作;全部数 外,其它所有寄存器均需在此模式下进行配			
26	CF0	0	全波/基波合相有功功率(0/1) CF 脉冲输出[详见"CF 脉冲来源选择寄存器(0xEC34, ZZPCF0A)"] 用户可通过配置全波/基波合相有功功率0组合寄存器(0xEC23, ZZPA0) 和全波/基波合相有功功率1组合寄存器(0xEC24, ZZPA1),使 CF0 引脚 输出各通道的全波/基波有功功率CF 脉冲。				
27	CF1	0	全波/基波合相无功功率(0/1) CF 脉冲输出[见"CF 脉冲来源选择寄存器(0xEC34, ZZPCF0A)"] 用户可通过配置全波/基波合相无功功率0组合寄存器(0xEC47, ZZQA0) 和全波/基波合相无功功率1组合寄存器(0xEC48, ZZQA1),使 CF1 引脚 输出各通道的全波/基波无功功率CF 脉冲。				
28	CF2	0	全波/基波合相有功功率(0/1) CF 脉冲输出[详见"CF 脉冲来源选择寄存器(0xEC34,ZZPCF0A)"] 用户可通过配置全波/基波合相有功功率0组合寄存器(0xEC23,ZZPA0) 和全波/基波合相有功功率1组合寄存器(0xEC24,ZZPA1),使 CF2 引脚 输出各通道的全波/基波有功功率CF 脉冲。				
29	CF3	0	全波/基波合相视在功率 CF 脉冲输出,或全波合相无功功率(0/1) CF 脉冲输出[详见"CF 脉冲来源选择寄存器(0xEC34,ZZPCF0A)"] 用户可通过配置全波/基波合相无功功率0组合寄存器(0xEC47,ZZQA0)、 全波/基波合相无功功率1组合寄存器(0xEC48,ZZQA1)和全波/基波合相 视在功率组合寄存器(0xEC05,ZZAPPA),使 CF3 引脚输出各通道的全波 无功功率或全波/基波视在功率 CF 脉冲。				
30	IRQ0	0	断 0 信 用户可通过中断使能 输出 断源。当某个中断发生	寄存器(IRQEN0和 IRQEN1)灵活配置中 E时,中断标志寄存器(0xA002, IRQFLAG)			
31	IRQ1	0	断 1 信 中相应的位置位,中的 输出 起中断。用户通过将	中相应的位置位,中断信号从相应的引脚输出,并向外部 MCU 提起中断。用户通过将中断标志位清零清除中断标志。			
32	ZX2	0	C相电压的符号位输出。1:负号;0:正号。				

引脚编号	名称	类型	功能说明		
			当该引脚上的输出由 1 到 0 跳变时, C 相电压正向过零点, 在引脚 IRQ0/1 上输出正向过零点中断。		
			B相电压的符号位输出。1: 负号; 0: 正号。		
33	ZX1	0	当该引脚上的输出由 1 到 0 跳变时, B 相电压正向过零点, 在引脚 IRQ0/1 上输出正向过零点中断。		
			A相电压的符号位输出。1:负号;0:正号。		
34	ZX0	0	当该引脚上的输出由 1 到 0 跳变时, A 相电压正向过零点,在引脚 IRQ0/1 上输出正向过零点中断。		
35	DSCK	0	DMA_SPI 传输接口,串行通信时钟输出引脚		
			DMA_SPI 传输接口,串行通信片选输出引脚。		
36	DSCS	0	低电平有效。高电平时,复位串行通信电路,并使 DSDO 输出低电平。		
37	DSDO	0	DMA_SPI 传输接口,串行通信数据输出引脚		
38	SPCS	I	SPI 接口,串行通信片选输入引脚,低电平有效。高电平时,复位串行通信电		
			路,并使 MISO 输出跟随 MOSI 输入的电平状态。		
39	SPCK	Ι	SPI 接口,串行通信时钟输入引脚		
40	MISO	0	SPI 接口,串行通信数据输出引脚		
41	MOSI	Ι	SPI 接口,串行通信数据输入引脚		
42	RST	I	复位输入,低电平有效。必须保持低电平 5ms 以上才有效		
43	DVSS	G	数字地		
44	DVDD	Р	数字 3.3V 电源输入		

模拟性能参数

参数	最小	典型	最大	单位	说明	
模拟输入信号						
单端输入信号	-200		+200	mV(峰值)		
信号带宽(-3dB)		3.2		kHz		
ADC 性能						
直流失调			2	mV		
有效位数		22		Bit	不包括符号位	
片上基准电压						
偏差	-20		20	mV		
电源抑制比		80		dB		
温度系数		10		ppm/°C		
输出电压		1.185		V		
POR 性能						
检测门限(DVCC)	1.7	1.8	1.9	V		
VDCIN						
输入电压	0		VDD	V		
输入阻抗		1.5		Μ'Ω		
低电压检测门限(PWRDN)		1.0		V		
低电压检测门限(PWRUP)		1.1		V		
		·				

计量性能参数

参数	典型	单位	说明					
通道间相差								
PF=0.8 容性	±0.05	度						
PF=0.5 感性	±0.05	度						
全波有功功率计量误差	0.1	%	动态范围 10000:1 @ 25°C					
全波有功功率计量带宽	3.2	kHz						
全波无功功率计量误差	0.1	%	动态范围 5000:1 @ 25°C					
全波无功功率计量带宽	3.2	kHz						
基波有功功率计量误差	0.1	%	动态范围 10000:1 @ 25°C					
基波有功功率计量带宽	65	Hz						
基波无功功率计量误差	0.1	%	动态范围 5000:1 @ 25°C					
基波无功功率计量带宽	65	Hz						
全波视在功率计量误差	0.5	%	动态范围 2000:1 @ 25°C					
基波视在功率计量误差	0.5	%	动态范围 2000:1 @ 25°C					
电压有效值误差	0.5	%	动态范围 2000:1 @ 25°C					
电压有效值带宽	3.2	kHz						
电流有效值误差	0.5	%	动态范围 2000:1 @ 25°C					
电流有效值带宽	3.2	kHz						
CF 脉冲输出特性								
最大输出频率	102.4	kHz						
占空比	50	%	当脉冲周期低于 160ms 时					
最大脉宽	80	ms						

极限参数

参数	最小	典型	最大	单位	说明		
数字 IO,输出							
输出高电平,V _{OH}	2.4			V	16mA 电流短时间内不会对芯片造成		
I _{SOURCE}		12	16	mA	损坏;长时间大于16mA的电流会对		
输出低电平 VoL			0.4	V	心方适成须坏。DVDD33 如果是田 LDO33 供电, IO 上消耗的总电流不		
Isink		12	16	mA	能大于 LDO33 的最大驱动能力。		
数字 IO,输入							
输入高电平, V _{INH}	2.0			V			
输入低电平,VINL			0.4	V			
SPI 接口速率	512		6553600	Hz			
DMA_SPI 接口速 率		3.2768		MHz			
电源输入	I	I					
AVDD	2.6	3.3	3.6	v			
数字电源输出(DVCC)							
电压	2.2	2.43	2.7	V			
电流			35	mA			
电流采样通道输入 电压	-0.3		+3.3	v	相对于地		
电压采样通道输入 电压	-0.3		+3.3	v	相对于地		
工作温度	-40		+85	°C			
存储温度	-55		+150	°C			

功耗

工作模式	式/电路模块	功耗	单位	说明			
全速 工作	正常工作模式*	9.16	mA	系统时钟频率为 6.5536MHz, ADC 时钟频率为 819.2kHz, 开启 A/B/C 三相电压/电流通道 ADC 时的芯片消耗电流数据。详见"工作 状态"。			
		9.9	mA	系统时钟频率为 6.5536MHz, ADC 时钟频率为 819.2kHz, 开启 A/B/C 三相电压/电流通道 ADC, 和零线电流通道 ADC 时的芯片消耗 电流数据。详见"工作状态"。			
	电流有效值计量模 式*	5.1	mA	系统时钟频率为 6.5536MHz, ADC 时钟频率为 819.2kHz, 开启 A/B/C 三相电压/电流通道 ADC 时的芯片消耗电流数据。详见"工作 状态"。			
降频 计量	停电全失压预判断 模式*	1.65	mA	系统时钟频率为 819.2kHz, ADC 时钟频率为 204.8kHz, 开启 A/B/C			
	电流有效值计量模 式*	2.2	mA	二伯电压/电视通道 ADC 时的心开拍枪电视数据。许光 阵厥计重模式 配置"。			
	正常工作模式*	3.21	mA	系统时钟频率为 1.6384MHz, ADC 时钟频率为 204.8kHz, 开启 A/B/C 三相电压/电流通道 ADC 时的芯片消耗电流数据。详见"降频 计量模式配置"。			
休眠	深睡眠	0.19	μA	详见"深睡眠状态"			

*正常工作模式、电流有效值计量模式和停电全失压预判断模式是由引脚 PM0(Pin24)和 PM1(Pin25)的输入信号 决定的。详见"系统状态"。

功能框图

第1章 寄存器列表

1.1 模拟控制寄存器

表 1-1 模拟控制寄存器 0(0x8000, ANCtrl0)

0x8000, R/W,模拟控制寄存器 0, ANCtrl0						
位			功能	说明		
Bit[31:28]	保留	0		为保证系统正常工作,必须为0。		
Bit27	SHORTV2	0	电压通道放大器前短路	1 : 使能		
Bit26	SHORTV1	0	电压通道 ADC 前短路	1: 使能		
Bit25	SHORTI2	0	电流通道放大器前短路	1 : 使能		
Bit24	SHORTI1	0	电流通道 ADC 前短路	1: 使能		
Bit[23:19]	保留	0		为保证系统正常工作,必须为0。		
Bit18	GUC	0	C相电压通道(UC)模 拟增益控制	0: ×1; 1: ×2。 建议配置为2倍。		
Bit17	GUB	0	B相电压通道(UB)模 拟增益控制	 0: ×1; 1: ×2。 建议配置为2倍。 		
Bit16	GUA	0	A 相电压通道(UA)模 拟增益控制	0: ×1; 1: ×2。 建议配置为2倍。		
Bit15	保留	0		为保证系统正常工作,必须为0。		
Bit[14:12]	GIN<2:0>	0	零线电流通道(IN)模拟 增益控制	000: ×2: 001: ×4: 010: ×16; 011/100/101/110/111: ×32		

0x8000, R/	0x8000, R/W,模拟控制寄存器 0, ANCtrl0				
位		默 认 值	功能	说明	
Bit11	保留	0		为保证系统正常工作,必须为0。	
Bit[10:8]	GIC<2:0>	0	C 相电流通道(IC)模 拟增益控制	000: ×2; 001: ×4; 010: ×16; 011/100/101/110/111: ×32 在停电全失压预判断模式下,建议将电流通道 ADC 的模 拟增益配置为 32 倍。	
Bit7	保留	0		为保证系统正常工作,必须为0。	
Bit[6:4]	GIB<2:0>	0	B相电流通道(IB)模拟 增益控制	 000: ×2; 001: ×4; 010: ×16; 011/100/101/110/111: ×32 在停电全失压预判断模式下,建议将电流通道 ADC 的模 拟增益配置为 32 倍。 	
Bit3	保留	0		为保证系统正常工作,必须为0。	
Bit[2:0]	GIA<2:0>	0	A相电流通道(IA)模拟 增益控制	 000: ×2; 001: ×4; 010: ×16; 011/100/101/110/111: ×32 在停电全失压预判断模式下,建议将电流通道 ADC 的模 拟增益配置为 32 倍。 	

与系统自校验。

表 1-2 模拟控制寄存器 1(0x8001, ANCtrl1)

0x8001, R/W, 模拟控制寄存器 1, ANCtrl1

位		默 认 值	功能	说明
Bit[31:14]	保留	0		为保证系统正常工作,必须为 0。
Bit13	REFGIT	0	ADC 参考产生偏置电流调整	0: ×1; 1: ×1.5
Bit12	REFBIT	0	ADC 参考 Buffer 偏置电流调整	0: ×1; 1: ×1.33
Bit[11:10]	ADIT2<1:0>	0	ADC 第二级偏置电流调整	00: ×1; 01: ×1.5; 10: ×2; 11: ×2.5
Bit[9:8]	ADIT1<1:0>	0	ADC 第一级偏置电流调整	00: ×1; 01: ×1.5; 10: ×2; 11: ×2.5
Bit7	保留	0		为保证系统正常工作,必须为0。
Bit6	ADRSTUC	0	C相电压通道(UC)调制器积分器复位	1: 使能; 0: 禁止
Bit5	ADRSTUB	0	B相电压通道(UB)调制器积分器复位	 1: 使能; 0: 禁止
Bit4	ADRSTUA	0	A相电压通道(UA)调制器积分器复位	1: 使能; 0: 禁止
Bit3	ADRSTIN	0	零线电流通道(IN)调制器积分器复 位	1: 使能; 0: 禁止
Bit2	ADRSTIC	0	C 相电流通道(IC)调制器积分器复位	1: 使能; 0: 禁止

0x8001, R/W, 模拟控制寄存器 1, ANCtrl1

位		默 认 值	功能	说明
Bit1	ADRSTIB	0	B 相电流通道(IB)调制器积分器复位	1: 使能; 0: 禁止
Bit0	ADRSTIA	0	A 相电流通道(IA)调制器积分器复 位	 1: 使能; 0: 禁止

注意:该寄存器(ANCtrl1)的配置值可通过电能计量模块中的模拟控制寄存器1(ZZANA1, 0xEC02)读出,并参与系统自校验。

表 1-3 模拟控制寄存器 2(0x8002, ANCtrl2)

0x8002, R/	0x8002, R/W,模拟控制寄存器 2, ANCtrl2				
位		默 认 值	功能说明		
Bit31	保留	0	必须配置为 0		
Bit30	ADPDUCN	0	开关 C 相电压通道(UC) ADC	0 :关闭;	
Bit29	ADPDUBN	0	开关B相电压通道(UB)ADC	1. 打开	
Bit28	ADPDUAN	0	开关A相电压通道(UA)ADC	复位后,976µs 后,bit[31:24]自动配置为	
Bit27	ADPDINN	0	开关零线电流通道(IN)ADC	0b11111111,其中 bit[30:24]分别打开 7	
Bit26	ADPDICN	0	开关C相电流通道(IC)ADC	路通道。自动配置完成后,应该将 BIT31 清	
Bit25	ADPDIBN	0	开关 B 相电流通道(IB)ADC	U, 省则会影响 ADC 性能。	
Bit24	ADPDIAN	0	开关A相电流通道(IA)ADC		
Bit23	AMPITN	0	零线电流通道(IN)放大器偏置 电流调整	1: 降至 50%	
Bit22	AMPITI	0	电流通道放大器偏置电流调整	1: 降至 50%	
Bit21	保留	0		为保证系统正常工作,必须为0。	
Bit20	AMPITU	0	电压通道放大器偏置电流调整	1: 降至 50%	
Bit[19:18]	保留	0		为保证系统正常工作,必须为0。	
Bit[17:16]	CURRIT<1:0>	0	模拟电路偏置电流调整	00: 1;	

0x8002, R/	0x8002, R/W,模拟控制寄存器 2, ANCtrl2					
位		默 认 值	功能说明			
				01: -33%;		
				10: -66%;		
				11: -75%		
				000: 不调整;		
				001: +4ppm;		
				010: +8ppm;		
				011: +12ppm;		
Bit[15:13]	REST<2:0>	0	带 隙 基 准 电 压 源 电 路 (Bandgap)温度系数调整	100: -16ppm;		
				101: -12ppm;		
				110: -8ppm;		
				111: -4ppm		
				建议设置为 0b010,即调整+8ppm。		
				00: 不调整;		
	RESTL<1:0>	0	带隙基准电压源电路	01: -20ppm;		
Bit[12:11]				10: -40ppm;		
				11: -60ppm		
				建议设置为 0b10,即调整-40ppm。		
				0: 与输入时钟同相;		
Bit10	CLKOSEL	0	ADC 时钟输出选择	1: 与输入时钟反相		
				为保证系统正常工作,该位必须配置为1。		
Bit9	保留	0	-	为保证系统正常工作,必须为0。		
D:+0	BCDCHODN	0	开 半 Pandaan 中國份紅洲中華	1: 关闭;		
	DGPCHUPIN	U	「一天 Danuyap 电始的初级功能	0 :开启(默认)		
Bit[7:0]	保留	0	-	为保证系统正常工作,必须为0。		
注意: 该寄存	注意:该寄存器(ANCtrl2)的配置值可通过电能计量模块中的模拟控制寄存器2(ZZANA2,0xEC03)读出,并参					

与系统自校验。

表 1-4 模拟控制寄存器 3(0x8003, ANCtrl3)

0x8003, R/W,模拟控制寄存器 3, ANCtrl3					
位		默 认 值	功能	说明	
Bit[31:20]	保留	0	-	为保证系统正常工作,必须为0。	
Bit[19:18]	ADCLKSEL<1:0>	0	ADC 时钟频率选择	以 204.8kHz 为基准。 00: ×4; 01: ×8; 10: ×1; 11: ×2 当引脚 PM0/PM1 输入高电平时,即芯片工作于 正常工作模式下时,电能计量时钟频率应为	
Bit[17:16]	MEACLKSEL<1:0>	0	电能计量时钟频率选择	 以 819.2kHz 为基准。 00: ×8; 01: ×4; 10: ×2; 11: ×1 当引脚 PM0/PM1 输入高电平时,即芯片工作于 正常工作模式下时,电能计量时钟频率应为 ADC 时钟频率的 8 倍。 	
Bit[15:11]	保留	0	-	为保证系统正常工作,必须为0。	
Bit10	REFBUFEN	0	各路 ADC 参考 Buffer 使能	 0:禁止(默认); 1:使能。 为保证系统正常工作,必须为1。 	
Bit[9:3]	保留	0	-	为保证系统正常工作,必须为0。	
Bit2	CLKPDN	0	使能时钟分频电路	0. 埜止・	
Bit1	BGPPDNB	0	使能带隙基准电压源电路(Bandgap)B	1: 使能。	

1.2.1 计量控制寄存器

0x8003, R/W,模拟控制寄存器 3, ANCtrl3				
位		默 认 值	功能	说明
BitO	BGPPDNA 0 使1 路		使能带隙基准电压源电路(Bandgap)A	复位后,488µs 后,bit[2:0]自动配置为 0b101,开启时钟分频电路和带隙基准电压源电 路A,关闭带隙基准电压源电路B。之后,用户 必须开启带隙基电压源电路B,关闭带隙基准电 压源电路A,即,将bit[2:0]配置为0b110。

注意: 该寄存器(ANCtrl3)的配置值可通过电能计量模块中的模拟控制寄存器 3(ZZANA3, 0xEC04)读出,并参与系统自校验。

1.2计量配置寄存器

表 1-5 计量控制寄存器 0(0xC000, MTPARA0)

0xC000, R,	0xC000, R/W, 计量控制寄存器 0, MTPARA0					
位		默 认 值	功能	说明		
Bit[31:24]	MTRAM<7:0>	0	电能计量模块部分 数据存储器 RAM 清 空或休眠 地址范围包括: 0xC800~0xC837 0xC880~0xC8B7 0xE000~0xE08F 0xE800~0xEAB7 0xF800~0xF87F 0xF800~0xF1EF	 写入 0b10101010,等待 20ms,即可 清空地址范围 (0xE000~0xE08F/ 0xE800~0xEAB7/ 0xF800~0xF87F/ 0xF000~0xF1EF) 的数据存储器 RAM。 写入 0b01010101,,该地址范围的数 据存储器 RAM 进入休眠状态,不再参 与运算。 写入 0b00010000 , 向 0xC800~0xC837 和 0xC880~0xC8B7 范围内的数据存储 器 RAM 写入 0,清空该地址范围的数 据存储器 RAM 的内容。 	用户可通过访 问地址 0xC013 的 bit7 ~ bit0 依 序访问 MTPARA0 的 bit31~bit24。	
Bit[23:21]	保留	0				

0xC000, R	0xC000, R/W, 计量控制寄存器 0, MTPARA0					
位		默 认 值	功能	说明		
Bit[20:16]	MSKP	0	全波有功功率比差 分段基波电流门限 值回差控制	该寄存器的值决定全波有功功率比差分 段基波电流门限值的回差值。 比如:如果 MSKP 的值为 8,上述电流 门限值为 0xabcd,则该电流门限值的 后 8 个比特表示回差范围,即上门限值 为 0xabff,下门限值为 0xab00。	用户可通过访 问 地 址 0xC012 的 bit7~bit0 依序 访问 MTPARA0 的 bit23~bit16。	
Bit[15:13]	保留	0				
Bit[12:8]	MSKA	0	全波角差分段基波 电流门限值回差控 制	该寄存器的值决定全波角差分段基波电 流门限值的回差值。 比如:如果 MSKA 的值为 8,上述电流 门限值为 0xabcd,则该电流门限值的 后 8 个比特表示回差范围,即上门限值 为 0xabff,下门限值为 0xab00。	用户可通过访 问 地 址 0xC011 的 bit7~bit0 依序 访问 MTPARA0 的bit15~bit8。	
Bit7	保留	0				
Bit6	ADCIC	0	使能 C 相电流通道 (IC) ADC 数字信 号输入	1: 使能: 0: 禁止,此时,该通道数字 信号输入恒为0		
Bit5	ADCIB	0	使能 B 相电流通道(IB) ADC 数字信号输入	1: 使能; 0: 禁止,此时,该通道数字 信号输入恒为 0	用户可通过访问 地 址	
Bit4	ADCIA	0	使能 A 相电流通道 (IA) ADC 数字信 号输入	1: 使能; 0: 禁止,此时,该通道数字 信号输入恒为 0	UxCU10 的 bit7~bit0 依序 访问寄存器 MTPARA0 的	
Bit3	ADCIN	0	使能零线电流通道 (IN) ADC 数字信 号输入	1: 使能; 0: 禁止,此时,该通道数字 信号输入恒为 0	bit7~bit0。	
Bit2	ADCUC	0	使能 C 相电压通道(UC) ADC 数字信号输入	1 :使能;0:禁止,此时,该通道数字 信号输入恒为0		

0xC000, R/W, 计量控制寄存器 0, MTPARA0

位		默 认 值	功能	说明	
Bit1	ADCUB	0	使能 B 相电压通道(UB) ADC 数字信号输入	1: 使能; 0: 禁止, 此时, 该通道数字 信号输入恒为 0	
BitO	ADCUA	0	使能 A 相电压通道 (UA) ADC 数字信 号输入	 1:使能; 0:禁止,此时,该通道数字信号输入恒为0 	

注意: 该寄存器(MTPARA0)的配置值可通过电能计量模块中的电能计量控制寄存器 0(ZZPARA0, 0xEC27)读出,并参与系统自校验。

表 1-6 计量控制寄存器 1(0xC001, MTPARA1)

0xC001, R/W, 计量控制寄存器 1, MTPARA1						
位		默认 值	功能	说明		
Bit[31:27]	保留	0				
Bit[26:24]	ATXIN	0	零线电流通道(IN)数字 增益控制	1~128 倍(2 ^{ATXIN})		
Bit23	保留	0				
Bit[22:20]	ATXIC	0	C相电流通道(IC)数字 增益控制	1~128 倍(2 ^{ATXIC})		
Bit19	保留	0				
Bit[18:16]	ATXUC	0	C相电压通道(UC)数字 增益控制	1~128 倍(2 ^{ATXUC}) 如果电压信号较小,经过模拟增益后,仍比 ADC 满量程 小很多,建议将数字增益配置为 8 倍或 16 倍,以提高性 能。		
Bit15	保留	0				
Bit[14:12]	ATXIB	0	B相电流通道(IB)数字 增益控制	1~128 倍(2 ^{ATXIB})		
Bit11	保留	0				

0xC001, R/W, 计量控制寄存器 1, MTPARA1

位		默认 值	功能	说明		
Bit[10:8]	ATXUB	0	B相电压通道(UB)数字 增益控制	1~128 倍(2 ^{ATXUB}) 如果电压信号较小,经过模拟增益后,仍比 ADC 满量程 小很多,建议将数字增益配置为 8 倍或 16 倍,以提高性 能。		
Bit7	保留	0				
Bit[6:4]	ATXIA	0	A 相电流通道(IA)数字 增益控制	1~128 倍(2 ^{ATXIA})		
Bit3	保留	0				
Bit[2:0]	ATXUA	0	A 相电压通道(UA)数字 增益控制	1~128 倍(2 ^{ATXUA}) 如果电压信号较小,经过模拟增益后,仍比 ADC 满量程 小很多,建议将数字增益配置为 8 倍或 16 倍,以提高性 能。		

注意: 该寄存器(MTPARA1)的配置值可通过电能计量模块中的电能计量控制寄存器 1(ZZPARA1, 0xEC28)读出,并参与系统自校验。

表 1-7 计量控制寄存器 2(0xC002, MTPARA2)

0xC002, R/W, 计量控制寄存器 2, MTPARA2					
位		默 认 值	功能	说明	
Bit[31:28]	保留				
Bit27	DSPICK	0	DMA 模式发送数据的 奇偶校验	0: 偶校验; 1: 奇校验	用户可通过访
Bit26	DSPIMD	0	DMA 模式发送数据帧 格式选择	0:一次发送 32 位;1:分两次发送 32 位	向 地 址 0xC01B 的 bit7~bit0 依序
Bit25	PECEN	0	全波有功功率比差分段 使能	1: 禁止; 0: 使能	访问寄存器 MTPARA2 的 bit31~bit24。
Bit24	AECEN	0	角差分段使能	1: 禁止; 0: 使能	

0xC002, R/W, 计量控制寄存器 2, MTPARA2 默 功能 位 说明 认 值 保留 Bit23 1: 使能: **0**:禁止 Bit22:发送零线通道(IN)信号的原 始波形; Bit21: 发送C相电流通道(IC)信号 用户可通过访 的原始波形; 问 地 址 0xC01A 的 Bit20: 发送 C 相电压通道 (UC) 信号 使能通过 DMA_SPI 传 bit7~bit0 依序 的原始波形; 输接口发送各通道信号 Bit[22:16] DSPIEN 0 访问寄存器 Bit19: 发送 B 相电流通道 (IB) 信号 原始波形 MTPARA2 的 的原始波形; bit23~bit16。 Bit18: 发送 B 相电压通道 (UB) 信号 的原始波形; Bit17: 发送 A 相电流通道 (IA) 信号 的原始波形; Bit16:发送A相电压通道(UA)信号 的原始波形 0:禁止; 使能普通能量累加 Bit15 EGYEN 0 **1:** 使能 用户可通过访 0: 三相四线制; 表型应用选择 Bit14 MTMODE 0 问 地 址 **1**: 三相三线制 0xC019 的 bit7~bit0 依序 0: 根据有效值计算; 视在功率计算模式选择 Bit13 APPMODE 0 访问寄存器 1: 根据有功功率和无功功率计算 MTPARA2 的 0:禁止; 使能数字积分器,用于 bit15~bit8。 0 Bit12 DIDTEN 罗氏线圈采样应用 **1:** 使能 直流通过使能 **1:** 使能。 Bit11 DCBYPASS 0

0xC002, R/W, 计量控制寄存器 2, MTPARA2					
位		默 认 值	功能	说明	
				当使能直流通过时,原始信号无需通过 高通滤波器,直流分量可参与有效值计 算和电能计量,用于直流电应用。	
Bit[10:8]	CFFAST	0	能量脉冲产生速度加倍	 000~011:正常速度; 100:4倍; 101:16倍; 110:64倍; 111:128倍 	
Bit[7:4]	CFCALC	0	全波/基波有功/无功/ 视在能量高速累加使能	 1:使能; 0:禁止 Bit7:全波/基波合相视在能量或全波 合相无功能量高速累加(CF3) Bit6:全波/基波合相有功能量高速累加(CF2) Bit5:全波/基波合相无功能量高速累加(CF1) Bit4:全波/基波合相有功能量高速累加(CF0) 	用户可通过访 问 地 址 0xC018 的 bit7bit0 依京
Bit[3:0]	CFON	0	高速能量 CF 脉冲输出 使能	 1:使能; 0:禁止 Bit3:高速全波/基波合相视在能量或 全波合相无功能量 CF 脉冲输出(CF3) Bit2:高速全波/基波合相有功能量 CF 脉冲输出(CF2) Bit1:高速全波/基波合相无功能量 CF 脉冲输出(CF1) Bit0:高速全波/基波合相有功能量 CF 脉冲输出(CF0) 	bit7~bit0 低序 访问寄存器 MTPARA2 的 bit7~bit0。

0xC002, R/W, 计量控制寄存器 2, MTPARA2					
位	默 认 值	功能	说明		

注意: 该寄存器(MTPARA2)的配置值可通过电能计量模块中的电能计量控制寄存器 2(ZZPARA2, 0xEC29)读出,并参与系统自校验。

表 1-8 计量控制寄存器 3(0xC003, MTPARA3)

0xC003, R/W, 计量控制寄存器 3, MTPARA3					
位 默认值		默认值	功能说明		
Bit[31.0]		0	该寄存器(MTPARA3)的配置值可通过电能计量模块中的电能计量控制寄存器 3(ZZPARA3, 0xEC2A)读出,并参与系统自校验。		
51(51:0)		0	该寄存器的值与表 11-1 参与校验和运算的寄存器中际 ZZPARAS (UXECZA) 外的 109 个寄存器的值的累加和即为系统计算得到的校验和。如果累加结果为 0xFFFFFFF,则当前数据保存正确;否则,数据有误,并从 IRQ0 上输出中断。		

1.2.2 合相功率组合寄存器

表 1-9 全波/基波合相有功功率 0 组合寄存器(0xEC23, ZZPA0)

0xEC23, R/W, 全波/基波合相有功功率 0 组合寄存器, ZZPA0						
位		默认值	功能	说明		
Bit[31:6]	保留					
Bit5	PCABS0	0	C相瞬时有功功率绝对值	 选择; 不选择 	加里该客友哭配置为 0b100001 则。	
Bit4	PC0	0	C相瞬时有功功率代数值	 选择; 不选择 	全波/基波合相有功功率=C相有功功率 绝对值+0+A相有功率代数值	
Bit3	PBABSO	0	B相瞬时有功功率绝对值	 选择; 不选择 	推荐配置为 0x15。 不能同时选择同相瞬时有功功率的绝对	
Bit2	PB0	0	B相瞬时有功功率代数值	 选择; 不选择 	值和代数值。 该寄存器需要参与自检校验,进行自检校	
Bit1	PAABSO	0	A相瞬时有功功率绝对值	 选择; 不选择] 验时,bit[31:6]目动补 0。	

V9203 数据手册

D:+0	Bito PAO O	0	A相瞬时有功功率代数值	1:选择;	
BitU		U		0:不选择	

表 1-10 全波/基波合相有功功率 1 组合寄存器(0xEC24, ZZPA1)

0xEC24, R/W, 全波/基波合相有功功率 0 组合寄存器, ZZPA1						
位		默认值	功能	说明		
Bit[31:6]	保留					
Bit5	PCABS1	0	C相瞬时有功功率绝对值	 选择; 不选择 		
Bit4	PC1	0	C相瞬时有功功率代数值	 1:选择; 0:不选择 	如果该寄存器配置为 0b000110,则: 全波/基波合相有功功率=0+B 相有功	
Bit3	PBABS1	0	B相瞬时有功功率绝对值	 选择; 不选择 	功率代数值+A相有功率绝对值 推荐配置为 0x2A。	
Bit2	PB1	0	B相瞬时有功功率代数值	 选择; 不选择 	不能同时选择同相瞬时有功功率的绝对值和代数值。	
Bit1	PAABS1	0	A相瞬时有功功率绝对值	 选择; 不选择 	该寄存器需要参与自检校验,进行自检 校验时,bit[31:6]自动补0。	
Bit0	PA1	0	A相瞬时有功功率代数值	 选择; 不选择 		

表 1-11 全波/基波合相无功功率 0 组合寄存器(0xEC47, ZZQA0)

0xEC47, R/W,全波/基波合相无功功率0组合寄存器,ZZQA0							
位		默认值	功能	说明	说明		
Bit[31:6]	保留	-	-	-			
Dite	004000	QCABS0 0	C相瞬时无功功率绝	1:选择;	如果该寄存器配置为 0b100001,则:		
BIt5	Bit5 QCABS0		对值	0: 不选择	全波/基波合相无功功率=C相无功功率绝对 值+0+A相无功功率代数值		
Dit 4			C相瞬时无功功率代	1:选择;			
Bit4 QC0	0	数值	0: 不选择	推存配直为UX15。			
Bit3 QBABS0	004060	BABSO 0	B相瞬时无功功率绝 对值	1:选择;	不能问时远洋问相瞬时几功功举的纪时值和 代数值。		
	QBABSU			0:不选择			

0xEC47, R/W, 全波/基波合相无功功率 0 组合寄存器, ZZQA0

位		默认值	功能	说明	
Bit2	QB0	0	B相瞬时无功功率代 数值	 1:选择; 0:不选择 	该寄存器需要参与自检校验,进行自检校验时,bit[31:6]自动补0。
Bit1	QAABS0	0	A相瞬时无功功率绝 对值	 1:选择; 0:不选择 	
Bit0	QA0	0	A 相瞬时无功功率代 数值	 选择; 不选择 	

表 1-12 全波/基波合相无功功率 1 组合寄存器(0xEC48, ZZQA1)

0xEC48, R/W,全波/基波合相无功功率1组合寄存器,ZZQA0						
位		默认值	功能	说明		
Bit[31:6]	保留	-	-	-		
Bit5	QCABS1	0	C 相瞬时无功功 率绝对值	 选择; 不选择 	如果该寄存器配置为 0b000110,则:	
Bit4	QC1	0	C 相瞬时无功功 率代数值	 选择; 不选择 	全波/基波合相无功功率=0+B 相无功功率代数 值+A 相无功功率绝对值	
Bit3	QBABS1	0	B 相瞬时无功功 率绝对值	 选择; 不选择 	推荐配置为 0x2A。 该寄存器需参与系统自检校验,参与自检校验	
Bit2	QB1	0	B 相瞬时无功功 率代数值	 选择; 不选择 	不能同时选择同相瞬时无功功率的绝对值和代数值。	
Bit1	QAABS1	0	A 相瞬时无功功 率绝对值	 选择; 不选择 	该寄存器需要参与自检校验,进行自检校验时, bit[31:6]自动补 0。	
Bit0	QA1	0	A 相瞬时无功功 率代数值	 选择; 不选择 		

表 1-13 全波/基波合相视在功率组合寄存器(0xEC05, ZZAPPA)

0xEC05, R/W,全波/基波合相视在功率组合寄存器,ZZAPPA						
位默认		默认值	功能	说明		
Bit[31:3]	保留	-	-	-	如果该寄存器配置为 0b110,则:	

0xEC05, R/W, 全波/基波合相视在功率组合寄存器, ZZAPPA 位 默认值 功能 说明 1:选择; 全波/基波合相视在功率=C相视在功率+B相视 APPC C相瞬时视在功率 Bit2 0 在功率+0 0: 不选择 推荐配置为 0x07。 1:选择; APPB B 相瞬时视在功率 Bit1 0 该寄存器需参与系统自检校验,参与自检校验 0: 不选择 时, bit[31:3]自动补 0。 1:选择; A相瞬时视在功率 Bit0 APPA 0 0: 不选择

1.2.3 高速 CF 脉冲来源选择寄存器

表 1-14 CF 脉冲来源选择寄存器(0xEC34, ZZPCF0A)

UXEC34, K/W, CF					
位		默认值	功能	说明	
Bit[31:16]	保留	-	-		
Bit[15:12]	CF3PS	0	CF3 脉冲来源选择	1000~1111: CF3 脉冲来源为基波合相视在功率; 0100~0111: CF3 脉冲来源为全波合相视在功率; 0010~0011: CF3 脉冲来源为全波合相无功功率 1 绝对值; 0001: CF3 脉冲来源为全波合相无功功率 0 绝对值; 0000: CF3 脉冲来源未定,为一个不为 0 的随机数值 用户可通过配置全波/基波合相无功功率 0 组合寄存器 (0xEC47,ZZQA0)、全波/基波合相无功功率 1 组合寄存器 (0xEC48,ZZQA1) 和全波/基波合相视在功率组合寄存器 (0xEC05,ZZAPPA),使 CF3 引脚输出各通道或合相的全 波无功功率或全波/基波视在功率 CF 脉冲。	
Bit[11:8]	CF2PS	0	CF2 脉冲来源选择	1000~1111: CF2 脉冲来源为基波合相有功功率 1 绝对值; 0100~0111: CF2 脉冲来源为基波合相有功功率 0 绝对值; 0010~0011: CF2 脉冲来源为全波合相有功功率 1 绝对值; 0001: CF2 脉冲来源为全波合相有功功率 0 绝对值; 0000: CF2 脉冲来源未定,为一个不为 0 的随机数值	

0xEC34, R/W, CF 脉冲来源选择寄存器, ZZPCF0

0xEC34, R/W, CF 脉冲来源选择寄存器, ZZPCF0A						
位		默认值	功能	说明		
				用户可通过配置全波/基波合相有功功率 0 组合寄存器 (0xEC23, ZZPA0)或全波/基波合相有功功率 1 组合寄存 器(0xEC24, ZZPA1),使 CF2 引脚输出各通道或合相的全 波/基波有功功率 CF 脉冲。		
Bit[7:4]	CF1PS	0	CF1 脉冲来源选择	1000~1111: CF1 脉冲来源为基波合相无功功率 1 绝对值; 0100~0111: CF1 脉冲来源为基波合相无功功率 0 绝对值; 0010~0011: CF1 脉冲来源为全波合相无功功率 1 绝对值; 0001: CF1 脉冲来源为全波合相无功功率 0 绝对值; 0000: CF1 脉冲来源未定,为一个不为 0 的随机数值 用户可通过配置全波/基波合相无功功率 0 组合寄存器 (0xEC47,ZZQA0)和全波/基波合相无功功率 1 组合寄存 器(0xEC48,ZZQA1),使 CF1 引脚输出各通道或合相的全 波/基波无功功率 CF 脉冲。		
Bit[3:0]	CF0PS	0	CF0 脉冲来源选择	1000~1111: CFO 脉冲来源为基波合相有功功率 1 绝对值; 0100~0111: CFO 脉冲来源为基波合相有功功率 0 绝对值; 0010~0011: CFO 脉冲来源为全波合相有功功率 1 绝对值; 0001: CFO 脉冲来源为全波合相有功功率 0 绝对值; 0000: CFO 脉冲来源未定,为一个不为 0 的随机数值 用户可通过配置全波/基波合相有功功率 0 组合寄存器 (0xEC23,ZZPA0)或全波/基波合相有功功率 1 组合寄存 器 (0xEC24,ZZPA1),使 CFO 引脚输出各通道或合相的全 波/基波有功功率 CF 脉冲。		

该寄存器需参与系统自检校验,参与自检校验时,bit[31:16]自动补0。

1.3 计量数据寄存器

1.3.1 直流分量寄存器

表 1-15 直流分量寄存器(R/W)

地址	寄存器			数据格式	说明
0xF02C	A相瞬时电压直流分量寄存器	DCUA	R/W	24-bit 补码	
0xF02D	A相瞬时电流直流分量寄存器	DCIA	R/W	24-bit 补码	均通过 32 位总线访问这 8 个寄存器,总
0xF02E	B相瞬时电压直流分量寄存器	DCUB	R/W	24-bit 补码	线低 24 位保存寄存器的数据,高 8 位均
0xF02F	B相瞬时电流直流分量寄存器	DCIB	R/W	24-bit 补码	
0xF030	C相瞬时电压直流分量寄存器	DCUC	R/W	24-bit 补码	寄存器的更新时间为 20ms,稳定时间为
0xF031	C相瞬时电流直流分量寄存器	DCIC	R/W	24-bit 补码	100ms。
0xF032	零线瞬时电流直流分量寄存器	DCIN	R/W	24-bit 补码	

1.3.2频率/相位寄存器

表 1-16 各相频率相位寄存器(R)

地址	寄存器		R/W	数 据 格 式	默 认 值	说明
0xC008	A 相频率寄存器	FA	R	32-bit 补码	0	频率数据恒为正数。 读数据时,低17位为频率数据,高15位为0。
0xC009	B相频率寄存器	FB	R	32-bit 补码	0	频率测量的分辨率为 0.0008Hz。
0xC00A	C相频率寄存器	FC	R	32-bit 补码	0	新时间为 640ms,稳定时间与信号大小有关,信号越小,稳定时间越长,一般大于 1s。
0xC00B	B 相电压相位寄 存器	PHSU B	R	32-bit 补码	0	相位测量的是各个信号相对 A 相电压的相对相位,
0xC00C	C 相电压相位寄 存器	PHSU C	R	32-bit 补码	0	因此, A 相电压的相位恒为 O。 相位数据恒为正数。读数据时,低 12 位为相位数
0xC00D	A 相电流相位寄 存器	PHSI A	R	32-bit 补码	0	据,高20位为0。 相位测量的分辨率为0.175°。
0xC00E	B 相电流相位寄 存器	PHSI B	R	32-bit 补码	0	当电能计量时钟频率为 6.5536MHz 时,寄存器更 新时间为 20ms,稳定时间与信号大小有关,信号
0xC00F	C 相电流相位寄 存器	PHSI C	R	32-bit 补码	0	越小,稳定时间越长,一般大于 1s。

1.3.3 功率因数寄存器

表 1-17 全波功率因数寄存器(R/W)

地址	寄存器	R/W	数据格式	说明	
0xE811	全波 A 相瞬时功率因 数寄存器	AFA	R/W	32-bit 无符号 数据	全波瞬时功率因数寄存器的值=全波瞬时有功功 率绝对值/全波瞬时视在功率
0xE812	全波 B 相瞬时功率因 数寄存器	AFB	R/W	32-bit 无符号 数据	当上述寄存器的数值与 2^31 的比值大于 0 时, 全波功率因数为 1。
0xE813	全波 C 相瞬时功率因 数寄存器	AFC	R/W	32-bit 无符号 数据	当电能计量时钟频率为 6.5536MHz 时,瞬时功 率因数寄存器的更新时间为 80ms,稳定时间为
0xE814	全波合相瞬时功率因 数寄存器	AFS	R/W	32-bit 无符号 数据	400ms; 平均功率因数寄存器的更新时间为 640ms, 稳定时间为 1s。
0xE8E4	全波 A 相平均功率因 数寄存器	MAFA	R/W	32-bit 无符号 数据	当电能计量时钟频率为 1.6384MHz 时, 瞬时功 率因数寄存器的更新时间为 320ms, 稳定时间
0xE8E5	全波 B 相平均功率因 数寄存器	MAFB	R/W	32-bit 无符号 数据	为 1.6s; 平均功率因数寄存器的更新时间为 2.56s, 稳定时间为 4s。
0xE8E6	全波 C 相平均功率因 数寄存器	MAFC	R/W	32-bit 无符号 数据	当电能计量时钟频率为 819.2kHz 时, 瞬时功率 因数寄存器的更新时间为 640ms,稳定时间为
0xE8E7	全波合相平均功率因 数寄存器	MAFS	R/W	32-bit 无符号 数据	 3.2s; 平均功率因数寄存器的更新时间为 5.12s,稳定时间为8s。

表 1-18 基波功率因数寄存器(R/W)

地址	寄存器			数据格式	说明
0xE857	基波 A 相瞬时功率因数寄存器	BFA	R/W	32-bit 无符 号数据	基波瞬时功率因数寄存器的值=基波瞬时有 功功率绝对值/基波瞬时视在功率
0xE858	基波 B 相瞬时功率因数寄存器	BFB	R/W	32-bit 无符 号数据	当上述寄存器的数值与 2^31 的比值大于 1 时,基波功率因数为 1。
0xE859	基波 C 相瞬时功率因数寄存器	BFC	R/W	32-bit 无符 号数据	当电能计量时钟频率为 6.5536MHz 时,瞬时功率因数寄存器的更新时间为 80ms,稳
0xE85A	基波合相瞬时功率因数寄存 器	BFS	R/W	32-bit 无符 号数据	定时间为 450ms; 平均功率因数寄存器的更 新时间为 640ms,稳定时间为 1s。
0xE8F9	基波 A 相平均功率因数寄存器	MBFA	R/W	32-bit 无符 号数据	当电能计量时钟频率为 1.6384MHz 时,瞬时功率因数寄存器的更新时间为 320ms,稳

地址	寄存器			数据格式	说明
0xE8FA	基波 B 相平均功率因数寄存 器	MBFB	R/W	32-bit 无符 号数据	定时间为 1.8s; 平均功率因数寄存器的更新时间为 2.56s,稳定时间为 4s。
0xE8FB	基波 C 相平均功率因数寄存 器	MBFC	R/W	32-bit 无符 号数据	当电能计量时钟频率为 819.2kHz 时, 瞬时 功率因数寄存器的更新时间为 640ms,稳定
0xE8FC	基波合相平均功率因数寄存 器	MBFS	R/W	32-bit 无符 号数据	间为 5.12s, 稳定时间为 8s。

1.3.4 电压/电流有效值寄存器

所有电压/电流有效值寄存器的数据格式为 32-bit 补码,数值恒为正数。

表 1-19 全波电压/电流有效值寄存器(R/W)

地址	寄存器	R/W	数据格式	说明	
0xE83E	全波 A 相瞬时电流有效值寄 存器	ARTIA	R/W	32-bit 补码	
0xE83F	全波 B 相瞬时电流有效值寄 存器	ARTIB	R/W	32-bit 补码	
0xE840	全波 C 相瞬时电流有效值寄 存器	ARTIC	R/W	32-bit 补码	当电能计量时钟频率为 6.5536MHz 时, 更新时间:20ms;稳定时间:150ms
0xE841	全波零线瞬时电流有效值寄 存器	ARTIN	R/W	32-bit 补码	当电能计量时钟频率为 1.6384MHz 时, 更新时间: 80ms; 稳定时间: 600ms
0xE842	全波 A 相瞬时电压有效值寄 存器	ARTUA	R/W	32-bit 补码	当电能计量时钟频率为 819.2kHz 时,更 新时间: 160ms; 稳定时间: 1200ms
0xE843	全波 B 相瞬时电压有效值寄 存器	ARTUB	R/W	32-bit 补码	
0xE844	全波 C 相瞬时电压有效值寄 存器	ARTUC	R/W	32-bit 补码	
0xE944	全波 A 相平均电压有效值寄 存器	MUA	R/W	32-bit 补码	当电能计量时钟频率为 6.5536MHz 时, 更新时间: 640ms; 稳定时间: 1s
0xE945	全波 B 相平均电压有效值寄 存器	MUB	R/W	32-bit 补码	当电能计量时钟频率为 1.6384MHz 时, 更新时间: 2.56s; 稳定时间: 4s
0xE946	全波 C 相平均电压有效值寄 存器	MUC	R/W	32-bit 补码	当电能计量时钟频率为 819.2kHz 时,更 新时间: 5.12s; 稳定时间: 8s

地址	寄存器			数据格式	说明	
0xE90E	全波 A 相平均电流有效值寄 存器	MIA	R/W	32-bit 补码		
0xE90F	全波 B 相平均电流有效值寄 存器	MIB	R/W	32-bit 补码		
0xE910	全波 C 相平均电流有效值寄 存器	MIC	R/W	32-bit 补码		
0xE911	全波零线平均电流有效值寄 存器	MIN	R/W	32-bit 补码		
0xE94B	全波电流有效值代数和寄存 器	MUM	R/W	32-bit 补码		
表 1-20 基波电压/电流有效值寄存器(R/W)						

地址	寄存器			数据格式	说明
0xE880	基波 A 相瞬时电流有效值 寄存器	BRTIA	R/W	32-bit 补码	
0xE881	基波 B 相瞬时电流有效值 寄存器	BRTIB	R/W	32-bit 补码	当电能计量时钟频率为 6.5536MHz 时,
0xE882	基波 C 相瞬时电流有效值 寄存器	BRTIC	R/W	32-bit 补码	更新时间:20ms;稳定时间:200ms 当电能计量时钟频率为1.6384MHz时,
0xE883	基波 A 相瞬时电压有效值 寄存器	BRTUA	R/W	32-bit 补码	更新时间:80ms;稳定时间:800ms 当电能计量时钟频率为819.2kHz时,更
0xE884	基波 B 相瞬时电压有效值 寄存器	BRTUB	R/W	32-bit 补码	新时间: 160ms; 稳定时间: 1.6s
0xE885	基波 C 相瞬时电压有效值 寄存器	BRTUC	R/W	32-bit 补码	
0xE8FD	基波 A 相平均电流有效值 寄存器	MBIA	R/W	32-bit 补码	当电能计量时钟频率为 6.5536MHz 时, 更新时间: 640ms; 稳定时间: 1s
0xE8FE	基波 B 相平均电流有效值 寄存器	MBIB	R/W	32-bit 补码	当电能计量时钟频率为 1.6384MHz 时, 更新时间: 2.56s; 稳定时间: 4s
0xE8FF	基波 C 相平均电流有效值 寄存器	MBIC	R/W	32-bit 补码	当电能计量时钟频率为 819.2kHz 时,更 新时间: 5.12s; 稳定时间: 8s
地址	寄存器		R/W	数据格式	说明
--------	----------------------	------	-----	------------------	----
0xE90B	基波 A 相平均电压有效值 寄存器	MBUA	R/W	32-bit 补码	
0xE90C	基波 B 相平均电压有效值 寄存器	MBUB	R/W	32-bit 补码	
0xE90D	基波 C 相平均电压有效值 寄存器	MBUC	R/W	32-bit 补码	

1.3.5 功率寄存器

表 1-21 全波有功/无功/视在功率寄存器(R/W)

表 1-21 全	波有功/无功/视在功率寄存器(R/W)				
地址	寄存器		R/W	数据格式	说明
0xE801	全波合相瞬时有功功率 0 绝对值寄存 器	AABSPSUM0	R/W	32-bit 补 码	
0xE802	全波合相瞬时有功功率 1 绝对值寄存 器	AABSPSUM1	R/W	32-bit 补 码	
0xE803	全波合相瞬时无功功率 0 绝对值寄存 器	AABSQSUM0	R/W	32-bit 补 码	恒为正数
0xE804	全波合相瞬时无功功率 1 绝对值寄存 器	AABSQSUM1	R/W	32-bit 补 码	当电能计量时钟频率为 6.5536MHz时,更新时间:
0xE805	A 相全波瞬时有功功率绝对值寄存器	ABSAPA	R/W	32-bit 补 码	80ms;稳定时间:400ms 当电能计量时钟频率为
0xE806	B相全波瞬时有功功率绝对值寄存器	ABSAPB	R/W	32-bit 补 码	1.6384MHz 时, 更新时间: 320ms; 稳定时间: 1.6s
0xE807	C相全波瞬时有功功率绝对值寄存器	ABSAPC	R/W	32-bit 补 码	当电能计量时钟频率为 819.2kHz 时,更新时间: 640ms;稳定时间: 3.2s
0xE808	A 相全波瞬时无功功率绝对值寄存器	ABSAQA	R/W	32-bit 补 码	
0xE809	B相全波瞬时无功功率绝对值寄存器	ABSAQB	R/W	32-bit 补 码	
0xE80A	C相全波瞬时无功功率绝对值寄存器	ABSAQC	R/W	32-bit 补 码	

地址	寄存器		R/W	数据格式	说明
0xE81F	A 相全波视在功率瞬时值寄存器	АРРА	R/W	32-bit 补 码	
0xE820	B相全波视在功率瞬时值寄存器	АРРВ	R/W	32-bit 补 码	
0xE821	C相全波视在功率瞬时值寄存器	АРРС	R/W	32-bit 补 码	
0xE822	全波合相瞬时有功功率 0 代数值寄存 器	APSUM0	R/W	32-bit 补 码	
0xE823	全波合相瞬时有功功率 1 代数值寄存 器	APSUM1	R/W	32-bit 补 码	
0xE824	A 相全波瞬时有功功率代数值寄存器	APTLA	R/W	32-bit 补 码	当电能计量时钟频率为 6.5536MHz时,更新时间:
0xE825	B相全波瞬时有功功率代数值寄存器	APTLB	R/W	32-bit 补 码	80ms; 稳定时间: 400ms 当电能计量时钟频率为
0xE826	C相全波瞬时有功功率代数值寄存器	APTLC	R/W	32-bit 补 码	1.05044m12时,更新时间: 320ms;稳定时间: 1.6s
0xE831	全波合相瞬时无功功率 0 代数值寄存 器	AQSUM0	R/W	32-bit 补 码	当电能计重可研频率为 819.2kHz 时,更新时间: 640ms; 稳定时间: 3.2s
0xE832	全波合相瞬时无功功率 1 代数值寄存 器	AQSUM1	R/W	32-bit 补 码	
0xE833	A 相全波瞬时无功功率代数值寄存器	AQTLA	R/W	32-bit 补 码	
0xE834	B相全波瞬时无功功率代数值寄存器	AQTLB	R/W	32-bit 补 码	
0xE835	C相全波瞬时无功功率代数值寄存器	AQTLC	R/W	32-bit 补 码	
0xE84E	全波合相视在功率瞬时值寄存器	ASSUM	R/W	32-bit 补 码	
0xE8E8	A 相全波平均有功功率寄存器	МАРА	R/W	32-bit 补 码	当电能计量时钟频率为
0xE8E9	B相全波平均有功功率寄存器	МАРВ	R/W	32-bit 补 码	640ms; 稳定时间: 1s

地址	寄存器		R/W	数据格式	说明
0xE8EA	C相全波平均有功功率寄存器	МАРС	R/W	32-bit 补 码	当电能计量时钟频率为 1.6384MHz时,更新时间:
0xE8EB	A 相全波平均视在功率寄存器	МАРРА	R/W	32-bit 补 码	2.56s;稳定时间:4s 当电能计量时钟频率为 819.2kHz时,更新时间,
0xE8EC	B 相全波平均视在功率寄存器	МАРРВ	R/W	32-bit 补 码	5.12s; 稳定时间: 8s
0xE8ED	C相全波平均视在功率寄存器	МАРРС	R/W	32-bit 补 码	
0xE8EE	全波合相平均有功功率 0 寄存器	MAPSUM0	R/W	32-bit 补 码	
0xE8EF	全波合相平均有功功率1寄存器	MAPSUM1	R/W	32-bit 补 码	
0xE8F0	A 相全波平均无功功率寄存器	MAQA	R/W	32-bit 补 码	
0xE8F1	B相全波平均无功功率寄存器	MAQB	R/W	32-bit 补 码	
0xE8F2	C相全波平均无功功率寄存器	MAQC	R/W	32-bit 补 码	
0xE8F3	全波合相平均无功功率 0 寄存器	MAQSUM0	R/W	32-bit 补 码	
0xE8F4	全波合相平均无功功率1寄存器	MAQSUM1	R/W	32-bit 补 码	
0xE8F5	全波合相平均视在功率寄存器	MASSUM	R/W	32-bit 补 码	

表 1-22 基波有功/无功/视在功率寄存器(R/W)

地址	寄存器		R/W	数据格式	说明
0xE80B	A相基波瞬时有功功率绝对值寄存器	ABSBPA	R/W	32-bit 补码	
0xE80C	B相基波瞬时有功功率绝对值寄存器	ABSBPB	R/W	32-bit 补码	恒为正数。
0xE80D	C相基波瞬时有功功率绝对值寄存器	ABSBPC	R/W	32-bit 补码	当电能计量时钟频率为 6.5536MHz 时, 更新时
0xE80E	A 相基波瞬时无功功率绝对值寄存器	ABSBQA	R/W	32-bit 补码	

地址	寄存器		R/W	数据格式	说明
0xE80F	B相基波瞬时无功功率绝对值寄存器	ABSBQB	R/W	32-bit 补码	间: 80ms; 稳定时间:
0xE810	C相基波瞬时无功功率绝对值寄存器	ABSBQC	R/W	32-bit 补码	450IIIS 当由能计量时轴频率为
0xE850	基波合相瞬时有功功率 0 绝对值寄存器	BABSPSUM0	R/W	32-bit 补码	1.6384MHz 时,更新时间: 320ms; 稳定时间:
0xE851	基波合相瞬时有功功率 1 绝对值寄存 器	BABSPSUM1	R/W	32-bit 补码	1.8s 当电能计量时钟频率为
0xE852	基波合相瞬时无功功率 0 绝对值寄存器	BABSQSUM0	R/W	32-bit 补码	819.2kHz 时, 更新时间: 640ms; 稳定时间: 3.6s
0xE853	基波合相瞬时无功功率 1 绝对值寄存 器	BABSQSUM1	R/W	32-bit 补码	
0xE854	A 相基波视在功率瞬时值寄存器	BAPPA	R/W	32-bit 补码	
0xE855	B相基波视在功率瞬时值寄存器	ВАРРВ	R/W	32-bit 补码	
0xE856	C相基波视在功率瞬时值寄存器	BAPPC	R/W	32-bit 补码	当由能计量时钟频率为
0xE864	基波合相瞬时有功功率 0 代数值寄存 器	BPSUM0	R/W	32-bit 补码	
0xE865	基波合相瞬时有功功率 1 代数值寄存 器	BPSUM1	R/W	32-bit 补码	6.5536MHz 时,更新时 间: 80ms; 稳定时间:
0xE866	A 相基波瞬时有功功率代数值寄存器	BPTLA	R/W	32-bit 补码	450ms
0xE867	B相基波瞬时有功功率代数值寄存器	BPTLB	R/W	32-bit 补码	当电能计量时钟频率为
0xE868	C相基波瞬时有功功率代数值寄存器	BPTLC	R/W	32-bit 补码	1.0304MHZ 的,更初的 间: 320ms; 稳定时间:
0xE875	基波合相瞬时无功功率 0 代数值寄存器	BQSUM0	R/W	32-bit 补码	1.8s 当电能计量时钟频率为
0xE876	基波合相瞬时无功功率 1 代数值寄存 器	BQSUM1	R/W	32-bit 补码	819.2kHz 时, 更新时间: 640ms; 稳定时间: 3.6s
0xE877	A 相基波瞬时无功功率代数值寄存器	BQTLA	R/W	32-bit 补码	
0xE878	B相基波瞬时无功功率代数值寄存器	BQTLB	R/W	32-bit 补码	
0xE879	C 相基波瞬时无功功率代数值寄存器	BQTLC	R/W	32-bit 补码	
0xE88C	基波合相视在功率瞬时值寄存器	BSSUM	R/W	32-bit 补码	
0xE8F6	A 相基波平均视在功率寄存器	МВАРРА	R/W	32-bit 补码	当电能计量时钟频率为
0xE8F7	B相基波平均视在功率寄存器	МВАРРВ	R/W	32-bit 补码	6.5536MHz 时,更新时

地址	寄存器		R/W	数据格式	说明
0xE8F8	C相基波平均视在功率寄存器	MBAPPC	R/W	32-bit 补码	间: 640ms; 稳定时间:
0xE900	A相基波平均有功功率寄存器	MBPA	R/W	32-bit 补码	15 当由能计量时轴频率为
0xE901	B相基波平均有功功率寄存器	MBPB	R/W	32-bit 补码	1.6384MHz 时,更新时
0xE902	C相基波平均有功功率寄存器	MBPC	R/W	32-bit 补码	间: 2.56s; 更新时间: 4s
0xE903	基波合相平均有功功率 0 寄存器	MBPSUM0	R/W	32-bit 补码	当电能计量时钟频率为 819.2kHz时,更新时间:
0xE904	基波合相平均有功功率1寄存器	MBPSUM1	R/W	32-bit 补码	
0xE905	A 相基波平均无功功率寄存器	MBQA	R/W	32-bit 补码	J.123, ABACHIMJ. 03
0xE906	B相基波平均无功功率寄存器	MBQB	R/W	32-bit 补码	
0xE907	C相基波平均无功功率寄存器	MBQC	R/W	32-bit 补码	
0xE908	基波合相平均无功功率 0 寄存器	MBQSUM0	R/W	32-bit 补码	
0xE909	基波合相平均无功功率1寄存器	MBQSUM1	R/W	32-bit 补码	
0xE90A	基波合相平均视在功率寄存器	MBSSUM	R/W	32-bit 补码	

1.3.6 普通能量累加和脉冲产生电路寄存器

表 1-23 全波有功/无功/视在能量累加寄存器(R/W)

地址	寄存器		R/W	数据格式
0xE8AC	A 相全波视在能量累加寄存器高位	EGYAPPAH	R/W	64 bit 王符号正数
0xE8AD	A 相全波视在能量累加寄存器低位	EGYAPPAL	R/W	04-011 元刊 与正致
0xE8AE	B相全波视在能量累加寄存器高位	EGYAPPBH	R/W	64 bit 王符号正数
0xE8AF	B相全波视在能量累加寄存器低位	EGYAPPBL	R/W	04-011 几刊 与正致
0xE8B0	C相全波视在能量累加寄存器高位	EGYAPPCH	R/W	64 bit 王符号正数
0xE8B1	C相全波视在能量累加寄存器低位	EGYAPPCL	R/W	04-011 元刊 与正致
0xE8B2	全波合相视在能量累加寄存器高位	EGYAPPSH	R/W	64 bit 王符号正粉
0xE8B3	全波合相视在能量累加寄存器低位	EGYAPPSL	R/W	04-011 几刊 与正致
0xE8D0	A 相全波有功能量累加寄存器高位	EGYPAH	R/W	64 bit 王符号正数
0xE8D1	A相全波有功能量累加寄存器低位	EGYPAL	R/W	04-011 几刊 与正致
0xE8D2	B相全波有功能量累加寄存器高位	EGYPBH	R/W	64 bit 王符号正粉
0xE8D3	B相全波有功能量累加寄存器低位	EGYPBL	R/W	04-011 几何万正剱

地址	寄存器		R/W	数据格式		
0xE8D4	C相全波有功能量累加寄存器高位	EGYPCH	R/W	64 bit 王竹丹王粉		
0xE8D5	C相全波有功能量累加寄存器低位	EGYPCL	R/W	- 04-011 几付与止致		
0xE8D6	全波合相有功能量累加寄存器 0 高位	EGYPS0H	R/W	64 bit 王竹丹王粉		
0xE8D7	全波合相有功能量累加寄存器 0 低位	EGYPS0L	R/W	- 04-DIL 儿付与止致		
0xE8D8	全波合相有功能量累加寄存器 1 高位	EGYPS1H	R/W	64 bit 王符号工数		
0xE8D9	全波合相有功能量累加寄存器1低位	EGYPS1L	R/W	04-011 几行与正效		
0xE8DA	A 相全波无功能量累加寄存器高位	EGYQAH	R/W	64 bit 王符号正数		
0xE8DB	A 相全波无功能量累加寄存器低位	EGYQAL	R/W	04-011 几利 与正效		
0xE8DC	B相全波无功能量累加寄存器高位	EGYQBH	R/W	64 bit 王符号正数		
0xE8DD	B相全波无功能量累加寄存器低位	EGYQBL	R/W	04-011 几刊 与正刻		
0xE8DE	C相全波无功能量累加寄存器高位	EGYQCH	R/W	64 bit 王符号正数		
0xE8DF	C相全波无功能量累加寄存器低位	EGYQCL	R/W	- 04-DIL 儿付与止致		
0xE8E0	全波合相无功能量累加寄存器 0 高位	EGYQS0H	R/W	64 bit 王竹丹王粉		
0xE8E1	全波合相无功能量累加寄存器 0 低位	EGYQS0L	R/W	- 04-DIL 儿付与止致		
0xE8E2	全波合相无功能量累加寄存器 1 高位	EGYQS1H	R/W	64 bit 王竹丹王粉		
0xE8E3	全波合相无功能量累加寄存器 1 低位	EGYQS1L	R/W	04-DIL 几何亏止致		
当电能计量时钟频率为 6.5536MHz 时,能量累加寄存器的累加频率为 12.5Hz。						

表 1-24 全波有功/无功/视在能量脉冲计数器(R/W)

地址	寄存器			数据格式
0xE88D	A 相全波视在能量脉冲计数器	CFAPPA	W/R	32-bit 无符号正数
0xE88E	B相全波视在能量脉冲计数器	CFAPPB	W/R	32-bit 无符号正数
0xE88F	C相全波视在能量脉冲计数器	CFAPPC	W/R	32-bit 无符号正数
0xE890	全波合相视在能量脉冲计数器	CFAPPS	W/R	32-bit 无符号正数
0xE89F	A 相全波有功能量脉冲计数器	CFPA	W/R	32-bit 无符号正数
0xE8A0	B相全波有功能量脉冲计数器	CFPB	W/R	32-bit 无符号正数
0xE8A1	C相全波有功能量脉冲计数器	CFPC	W/R	32-bit 无符号正数
0xE8A2	全波合相有功能量 0 脉冲计数器	CFPS0	W/R	32-bit 无符号正数

地址	寄存器		W/R	数据格式
0xE8A3	全波合相有功能量1脉冲计数器	CFPS1	W/R	32-bit 无符号正数
0xE8A4	A 相全波无功能量脉冲计数器	CFQA	W/R	32-bit 无符号正数
0xE8A5	B相全波无功能量脉冲计数器	CFQB	W/R	32-bit 无符号正数
0xE8A6	C相全波无功能量脉冲计数器	CFQC	W/R	32-bit 无符号正数
0xE8A7	全波合相无功能量 0 脉冲计数器	CFQS0	W/R	32-bit 无符号正数
0xE8A8	全波合相无功能量1脉冲计数器	CFQS1	W/R	32-bit 无符号正数

表 1-25 基波有功/无功/视在能量累加寄存器(R/W)

表 1-25 基波有	ī功/无功/视在能量累加寄存器(R/W)			
地址	寄存器		R/W	数据格式
0xE8B4	A 相基波视在能量累加寄存器高位	EGYBAPPAH	R/W	64-bit 王符号正 数
0xE8B5	A 相基波视在能量累加寄存器低位	EGYBAPPAL	R/W	04-011 元刊 与正效
0xE8B6	B相基波视在能量累加寄存器高位	EGYBAPPBH	R/W	64-bit 无符号正数
0xE8B7	B相基波视在能量累加寄存器低位	EGYBAPPBL	R/W	04-011 元刊 与正效
0xE8B8	C相基波视在能量累加寄存器高位	EGYBAPPCH	R/W	64-bit 无符号正数
0xE8B9	C相基波视在能量累加寄存器低位	EGYBAPPCL	R/W	
0xE8BA	基波合相视在能量累加寄存器高位	EGYBAPPSH	R/W	64-bit 无符号正数
0xE8BB	基波合相视在能量累加寄存器低位	EGYBAPPSL	R/W	04-011 元刊 与正效
0xE8BC	A 相基波有功能量累加寄存器高位	EGYBPAH	R/W	64-bit 无符号正数
0xE8BD	A 相基波有功能量累加寄存器低位	EGYBPAL	R/W	
0xE8BE	B相基波有功能量累加寄存器高位	EGYBPBH	R/W	64-bit 无符号正数
0xE8BF	B相基波有功能量累加寄存器低位	EGYBPBL	R/W	04-011 元刊 与正效
0xE8C0	C相基波有功能量累加寄存器高位	EGYBPCH	R/W	64_bit 王符号正 数
0xE8C1	C相基波有功能量累加寄存器低位	EGYBPCL	R/W	04-011 元刊 与正效
0xE8C2	基波合相有功能量累加寄存器 0 高位	EGYBPS0H	R/W	64-bit 王符号正粉
0xE8C3	基波合相有功能量累加寄存器 0 低位	EGYBPS0L	R/W	04-011 元刊 与正效
0xE8C4	基波合相有功能量累加寄存器 1 高位	EGYBPS1H	R/W	64-bit 无符号正 数
0xE8C5	基波合相有功能量累加寄存器1低位	EGYBPS1L	R/W	
0xE8C6	A 相基波无功能量累加寄存器高位	EGYBQAH	R/W	64-bit 无符号正数

地址	寄存器		R/W	数据格式		
0xE8C7	A 相基波无功能量累加寄存器低位	EGYBQAL	R/W			
0xE8C8	B相基波无功能量累加寄存器高位	EGYBQBH	R/W	64 bit 王符号正数		
0xE8C9	B相基波无功能量累加寄存器低位	EGYBQBL	R/W	04-011 几刊 与正致		
0xE8CA	C相基波无功能量累加寄存器高位	EGYBQCH	R/W	64 bit 王竹丹玉粉		
0xE8CB	C相基波无功能量累加寄存器低位	EGYBQCL	R/W	04-DIL 儿付与正剱		
0xE8CC	基波合相无功能量累加寄存器 0 高位	EGYBQS0H	R/W	64 bit 王竹吕玉粉		
0xE8CD	基波合相无功能量累加寄存器 0 低位	EGYBQS0L	R/W	04-DIL 儿付与正数		
0xE8CE	基波合相无功能量累加寄存器 1 高位	EGYBQS1H	R/W	64 bit 王尔吕玉粉		
0xE8CF	基波合相无功能量累加寄存器1低位	EGYBQS1L	R/W	04-DIL 无付亏止效		
当电能计量时钟频率为 6.5536MHz 时,能量累加寄存器的累加频率为 12.5Hz。						

表 1-26 基波有功/无功/视在能量脉冲计数器(R/W)

地址	寄存器		R/W	数据格式
0xE891	A相基波视在能量脉冲计数器	CFBAPPA	R/W	32-bit 无符号正数
0xE892	B相基波视在能量脉冲计数器	СҒВАРРВ	R/W	32-bit 无符号正数
0xE893	C相基波视在能量脉冲计数器	CFBAPPC	R/W	32-bit 无符号正数
0xE894	基波合相视在能量脉冲计数器	CFBAPPS	R/W	32-bit 无符号正数
0xE895	A相基波有功能量脉冲计数器	CFBPA	R/W	32-bit 无符号正数
0xE896	B相基波有功能量脉冲计数器	CFBPB	R/W	32-bit 无符号正数
0xE897	C相基波有功能量脉冲计数器	CFBPC	R/W	32-bit 无符号正数
0xE898	基波合相有功能量 0 脉冲计数器	CFBPS0	R/W	32-bit 无符号正数
0xE899	基波合相有功能量1脉冲计数器	CFBPS1	R/W	32-bit 无符号正数
0xE89A	A 相基波无功能量脉冲计数器	CFBQA	R/W	32-bit 无符号正数
0xE89B	B相基波无功能量脉冲计数器	CFBQB	R/W	32-bit 无符号正数
0xE89C	C相基波无功能量脉冲计数器	CFBQC	R/W	32-bit 无符号正数
0xE89D	基波合相无功能量 0 脉冲计数器	CFBQS0	R/W	32-bit 无符号正数
0xE89E	基波合相无功能量1脉冲计数器	CFBQS1	R/W	32-bit 无符号正数

1.3.7 高速能量累加和脉冲发生电路寄存器

表 1-27 高速电路功率寄存器(R/W)

地址	寄存器		R/W	数据格式	说明
0xEC33	高速全波/基波合相有功功率 寄存器	ZZPCF0	R/W	32-bit 补码	恒为正数。
0xEC38	高速全波/基波合相无功功率 寄存器	ZZPCF1	R/W	32-bit 补码	当电能计量时钟频率为 6.5536MHz 时, 更新时间: 80ms; 稳定时间: 400ms
0xEC3D	高速全波/基波合相有功功率 寄存器	ZZPCF2	R/W	32-bit 补码	当电能计量时钟频率为 1.6384MHz 时, 更新时间: 320ms; 稳定时间: 1.6s
0xEC42	高速全波/基波合相视在功率 或全波合相无功功率寄存器	ZZPCF3	R/W	32-bit 补码	当电能计量时钟频率为 819.2kHz 时, 更 新时间: 640ms; 稳定时间: 3.2s
<u></u>	使由路能量罗加客左哭(P/\/\/)				

表 1-28 高速电路能量累加寄存器(R/W)

地址	寄存器		R/W	数据格式	说明	
0xD000	高速全波/基波合相有功能量累加寄存器(CF0) 低位	EGY0L	R/W	64-bit 无符号		
0xD001	高速全波/基波合相有功能量累加寄存器(CF0) 高位	EGY0H	R/W	正数		
0xD002	高速全波/基波合相无功能量累加寄存器(CF1) 低位	EGY1L	R/W	64-bit 无符号		
0xD003	高速全波/基波合相无功能量累加寄存器(CF1) 高位	EGY1H	R/W	正数	当系统时钟为 6.5536MHz时,高	
0xD004	高速全波/基波合相有功能量累加寄存器(CF2) 低位	EGY2L	R/W	64-bit 无符号	在 器 每 秒 钟 累 加 204800 次。	
0xD005	高速全波/基波合相有功能量累加寄存器(CF2) 高位	EGY2H	R/W	正数		
0xD006	高速全波/基波合相视在能量累加寄存器或全波 合相无功能量累加寄存器(CF3)低位	EGY3L	R/W	64-bit 无符号		
0xD007	高速全波/基波合相视在能量累加寄存器或全波 合相无功能量累加寄存器(CF3)高位	EGY3H	R/W	正数		

表 1-29 高速电路能量脉冲计数器(R/W)

地址	寄存器	R/W	数据格式	说明	
0xD008	高速全波/基波合相有功	CF0	R/W	32-bit 无符号正数	
0xD009	高速全波/基波合相无功能量脉冲(CF1)计 数器	CF1	R/W	32-bit 无符号正数	当 CF 脉冲输出使 能时,高速能量脉
0XD00A	高速全波/基波合相有功能量脉冲(CF2)计 数器	CF2	R/W	32-bit 无符号正数	冲计数器每累加 2 次输出一个 CF 脉
0XD00B	高速全波/基波合相视在能量或全波合相无 功能量脉冲(CF3)计数器	CF3	R/W	32-bit 无符号正数	冲。

1.4 校表参数寄存器

1.4.1 预设直流偏置值寄存器

表 1-30 预设直流偏置值寄存器(R/W)

地址	寄存器	R/W	数据格式	说明	
0xEC16	A 相电流预设直流偏置值寄存器	ZZDCIA	R/W	24-bit 补码	通过32位总线访问这
0xEC17	B相电流预设直流偏置值寄存器	ZZDCIB	R/W	24-bit 补码	8 个寄存器:总线低
0xEC18	C相电流预设直流偏置值寄存器	ZZDCIC	R/W	24-bit 补码	据,其中最高位为符号
0xEC19	零线电流预设直流偏置值寄存器	ZZDCIN	R/W	24-bit 补码	位;总线高8位均等
0xEC1A	A相电压预设直流偏置值寄存器	ZZDCUA	R/W	24-bit 补码	于所读取的24位数据
0xEC1B	B相电压预设直流偏置值寄存器	ZZDCUB	R/W	24-bit 补码	• 的付亏 <u></u> 。
0xEC1C	C相电压预设直流偏置值寄存器	ZZDCUC	R/W	24-bit 补码	该奇存器而妥参与百 检校验,进行自检校验 时,高8位为扩展的 符号位。

1.4.2角差校正寄存器

表 1-31 分段角差寄存器(R/W)

地址	寄存器		R/W	数据格式	bit31~Bit24	Bit23~Bit16	Bit15~Bit8	Bit7~Bit0
0xE954	分段 0 角 差寄存 器	WAEC0	R/W	32-bit 补码	保留	C 相角差校正 值	B 相角差校 正值	A 相角差校 正值
0xE955	分段1角 差寄存 器	WAEC1	R/W	32-bit 补码	保留	C 相角差校正 值	B 相角差校 正值	A 相角差校 正值
0xE956	分段 2 角 差寄存 器	WAEC2	R/W	32-bit 补码	保留	C 相角差校正 值	B 相角差校 正值	A 相角差校 正值
0xE957	分段 3 角 差寄存 器	WAEC3	R/W	32-bit 补码	保留	C 相角差校正 值	B 相角差校 正值	A 相角差校 正值
0xE958	分段 4 角 差寄存 器	WAEC4	R/W	32-bit 补码	保留	C 相角差校正 值	B 相角差校 正值	A 相角差校 正值

说明: bit23/bit15/bit7 是角差校正值的符号位。1: 负号; 0: 正号。角差校正分辨率为 0.022°/lsb,角差调整范围 ±2.8°。当分段角差功能被禁止时,系统使用各相的分段 0 角差寄存器(如 WAEC0)的值进行角差校正,建议向各相 的分段 1/2/3/4 角差寄存器(如 WAEC1/2/3/4)均写入分段 0 角差校正值。

所有分段角差寄存器需参与系统自检校验。

表 1-32 角差分段电流门限值寄存器(R/W)

地址	寄存器		R/W 数据格式		说明	
0xE97C	A 相角差分段电流门限 值 0 寄存器	WTPA0A	R/W	32-bit 补码	以补偿后的基波瞬时电流有效值(IRMS)为 判断依据。	
0xE97D	B 相角差分段电流门限 值 O 寄存器	WTPA0B	R/W	32-bit 补码	以 A 相为例,	
0xE97E	C 相角差分段电流门限 值 O 寄存器	WTPA0C	R/W	32-bit 补码	当 IRMS <wtpa0a waec0="" 时,根据="" 进行<br="">角差校正;</wtpa0a>	
0xE97F	A 相角差分段电流门限 值1寄存器	WTPA1A	R/W	32-bit 补码	当 WTPA0A <irms<wtpa1a 时,根据<br="">WAEC1 进行角差校正;</irms<wtpa1a>	
0xE980	B 相角差分段电流门限 值1寄存器	WTPA1B	R/W	32-bit 补码	当 WIPA1A <irms<wipa2a 时,根据<br="">WAEC2进行角差校正;</irms<wipa2a>	

地址	寄存器		R/W	数据格式	说明
0xE981	C 相角差分段电流门限 值1寄存器	WTPA1C	R/W	32-bit 补码	当 WTPA2A <irms<wtpa3a 时,根据<br="">WAEC3进行角差校正;</irms<wtpa3a>
0xE982	A 相角差分段电流门限 值 2 寄存器	WTPA2A	R/W	32-bit 补码	当 IRMS>WTPA3A 时,根据 WAEC4 进行 角差校正
0xE983	B 相角差分段电流门限 值 2 寄存器	WTPA2B	R/W	32-bit 补码	所有角差分段电流门限值寄存器需参与系统 自检校验。
0xE984	C 相角差分段电流门限 值 2 寄存器	WTPA2C	R/W	32-bit 补码	
0xE985	A 相角差分段电流门限 值 3 寄存器	WTPA3A	R/W	32-bit 补码	
0xE986	B 相角差分段电流门限 值 3 寄存器	WTPA3B	R/W	32-bit 补码	
0xE987	C 相角差分段电流门限 值 3 寄存器	WTPA3C	R/W	32-bit 补码	

1.4.3 电压/电流有效值校正寄存器

表 1-33 全波电压/电流有效值补偿寄存器(R/W)

地址	寄存器		R/W	数据格式	说明
0xE968	A相全波电流有效值比差寄存器	WARTIA	R/W	32-bit 补码	
0xE969	B相全波电流有效值比差寄存器	WARTIB	R/W	32-bit 补码	寄存器读数与 2^31 比值即
0xE96A	C相全波电流有效值比差寄存器	WARTIC	R/W	32-bit 补码	为补偿值的头际值。 ,,,
0xE96B	全波零线电流有效值比差寄存器	WARTIN	R/W	32-bit 补码	
0xE96C	A相全波电压有效值比差寄存器	WARTUA	R/W	32-bit 补码	木空校正的电压/电流有效值 为 RMS',
0xE96D	B相全波电压有效值比差寄存器	WARTUB	R/W	32-bit 补码	校正后的电压/电流有效值为
0xE96E	C相全波电压有效值比差寄存器	WARTUC	R/W	32-bit 补码	RMS,
0xE994	A相全波电流有效值二次补偿寄存器	WWARTIA	R/W	32-bit 补码	比差值为 S,
0xE995	B相全波电流有效值二次补偿寄存器	WWARTIB	R/W	32-bit 补码	二次补偿值为 C,
0xE996	C相全波电流有效值二次补偿寄存器	WWARTIC	R/W	32-bit 补码	则,RMS=RMS'×(1+S)+C
0xE997	全波零线电流有效值二次补偿寄存 器	WWARTIN	R/W	32-bit 补码	

地址	寄存器			数据格式	说明
0xE998	A相全波电压有效值二次补偿寄存器	WWARTUA	R/W	32-bit 补码	所有全波电压/电流有效值补
0xE999	B相全波电压有效值二次补偿寄存器	WWARTUB	R/W	32-bit 补码	偿寄存器需参与系统自检校 ¹²²
0xE99A	C相全波电压有效值二次补偿寄存器	WWARTUC	R/W	32-bit 补码	<u>귀까</u> º

表 1-34 基波电压/电流有效值补偿寄存器(R/W)

地址	寄存器		R/W	数据格式	说明
0xE976	A相基波电流有效值比差寄存器	WBRTIA	R/W	32-bit 补码	
0xE977	B相基波电流有效值比差寄存器	WBRTIB	R/W	32-bit 补码	
0xE978	C相基波电流有效值比差寄存器	WBRTIC	R/W	32-bit 补码	
0xE979	A相基波电压有效值比差寄存器	WBRTUA	R/W	32-bit 补码	寄存器读数与 2^31 比值即为补偿 值的实际值
0xE97A	B相基波电压有效值比差寄存器	WBRTUB	R/W	32-bit 补码	值的关怀值。 设.
0xE97B	C相基波电压有效值比差寄存器	WBRTUC	R/W	32-bit 补码	▶ Q. 未经校正的由压/由流有效值为
0xE9A2	A 相基波电流有效值二次补偿寄 存器	WWBRTI A	R/W	32-bit 补码	RMS',
0xE9A3	B 相基波电流有效值二次补偿寄 存器	WWBRTI B	R/W	32-bit 补码	比差值为 S ,
0xE9A4	C相基波电流有效值二次补偿寄 存器	WWBRTI C	R/W	32-bit 补码	二次补偿值为 C, 则,RMS=RMS'×(1+S)+C
0xE9A5	A 相基波电压有效值二次补偿寄 存器	WWBRT UA	R/W	32-bit 补码	所有基波电压/电流有效值补偿寄存
0xE9A6	B 相基波电压有效值二次补偿寄 存器	WWBRT UB	R/W	32-bit 补码	器需参与系统自检校验。
0xE9A7	C相基波电压有效值二次补偿寄 存器	WWBRT UC	R/W	32-bit 补码	

1.4.4 功率校正寄存器

表 1-35 全波有功/无功功率校正寄存器(R/W)

地址	寄存器			数据格式	说明	
0xE959	A 相全波有功功率比差寄存器	WAPTA	R/W	32-bit 补码	寄存器读数与 2^31 比值即为补偿值 的实际值。	

地址	寄存器			数据格式	说明	
0xE95A	A相全波有功功率比差分段 0 寄存器	WAPTAK0	R/W	32-bit 补码	设: 未经校正的功率为 P ′,	
0xE95B	A相全波有功功率比差分段1 寄存器	WAPTAK1	R/W	32-bit 补码	补偿后的功率为 P ,	
0xE95C	A相全波有功功率比差分段 2 寄存器	WAPTAK2	R/W	32-bit 补码	工次补偿值为 C,	
0xE95D	B 相全波有功功率比差寄存 器	WAPTB	R/W	32-bit 补码	则, P=P'x (1+S) +C 全波有功功率比差时,系统自动将使用	
0xE95E	B相全波有功功率比差分段 O 寄存器	WAPTBK0	R/W	32-bit 补码	中的分段补偿寄存器中的值写入比差 寄存器中。比如:	
0xE95F	B相全波有功功率比差分段1 寄存器	WAPTBK1	R/W	32-bit 补码	如果系统当前使用 WAPTAK1,则该寄存器的值自动写入寄存器 WAPTA,参于运算。	
0xE960	B相全波有功功率比差分段 2 寄存器	WAPTBK2	R/W	32-bit 补码	当有功功率比差分段功能被禁止时,系 统使用各相的全波有功功率比差分段	
0xE961	C 相全波有功功率比差寄存 器	WAPTC	R/W	32-bit 补码	0 寄存器 (如 WAPTAK0)的值进行有 功功率比差,该寄存器的值自动写入比	
0xE962	C相全波有功功率比差分段 0 寄存器	WAPTCK0	R/W	32-bit 补码	差寄存器(如 WAPTA),建议将各相所 有有功功率比差寄存器都设为该相比	
0xE963	C相全波有功功率比差分段1 寄存器	WAPTCK1	R/W	32-bit 补码	差分段 0 (如 WAPIAK0) 的值。 所有全波有功/无功功率校正寄存器需	
0xE964	C相全波有功功率比差分段 2 寄存器	WAPTCK2	R/W	32-bit 补码	参与系统目检校验。	
0xE965	A 相全波无功功率比差寄存 器	WAQTA	R/W	32-bit 补码		
0xE966	B 相全波无功功率比差寄存 器	WAQTB	R/W	32-bit 补码		
0xE967	C 相全波无功功率比差寄存器	WAQTC	R/W	32-bit 补码		
0xE98E	A 相有功功率二次补偿寄存器	WWAPTA	R/W	32-bit 补码		
0xE98F	B 相有功功率二次补偿寄存 器	WWAPTB	R/W	32-bit 补码		

地址	寄存器			数据格式	说明		
0xE990	C 相有功功率二次补偿寄存器	WWAPTC	R/W	32-bit 补码			
0xE991	A 相无功功率二次补偿寄存 器	WWAQTA	R/W	32-bit 补码			
0xE992	B 相无功功率二次补偿寄存 器	WWAQTB	R/W	32-bit 补码			
0xE993	C 相无功功率二次补偿寄存 器	WWAQTC	R/W	32-bit 补码			
表 1-36 全波有功功率比差分段电流门限值寄存器(R/W)							

表 1-36 全波有功功率比差分段电流门限值寄存器(R/W)

地址	寄存器			数据格式	说明
0xE988	A 相全波有功功率比差分段电流 门限值 0 寄存器	WTPP0A	R/W	32-bit 补码	以补偿后的瞬时电流有效值(IRMS) 为判断依据。
0xE989	B 相全波有功功率比差分段电流 门限值 0 寄存器	WTPP0B	R/W	32-bit 补码	以A相为例, 当 IRMS <wtppoa td="" 使用<="" 时,=""></wtppoa>
0xE98A	C 相全波有功功率比差分段电流 门限值 0 寄存器	WTPPOC	R/W	32-bit 补码	WAPTAK0 进行全波有功功率比差; 当 WTPP0A <irms<wtpp1a td="" 时,<=""></irms<wtpp1a>
0xE98B	A 相全波有功功率比差分段电流 门限值1寄存器	WTPP1A	R/W	32-bit 补码	使用 WAPTAK1 进行全波有功功率 比差;
0xE98C	B 相全波有功功率比差分段电流 门限值1寄存器	WTPP1B	R/W	32-bit 补码	当 IRMS>WTPP1A 时, 使用 WAPTAK2 的值进行全波有功功率
0xE98D	C 相全波有功功率比差分段电流 门限值1寄存器	WTPP1C	R/W	32-bit 补码	比差。 所有全波有功功率比差分段电流门 限值寄存器需参与系统自检校验。

表 1-37 基波有功/无功功率校正寄存器(R/W)

地址	寄存器			数据格式	说明
0xE970	A 相基波有功功率比差寄存器	WBPTA	R/W	32-bit 补码	寄存器读数与 2^31 比值即为补偿值的 实际值。
0xE971	B 相基波有功功率比差寄存器	WBPTB	R/W	32-bit 补码	设:
0xE972	C 相基波有功功率比差寄存器	^{告寄存} WBPTC		32-bit 补码	补偿后的功率为 P,

地址	寄存器			数据格式	说明
0xE973	A 相基波无功功率比差寄存 器	WBQTA	R/W	32-bit 补码	比差值为 S, 二次补偿值为 C,
0xE974	B 相基波无功功率比差寄存 器	WBQTB	R/W	32-bit 补码	则, P=P'x (1+S) +C
0xE975	C 相基波无功功率比差寄存 器	WBQTC	R/W	32-bit 补码	所有基波有功/无功功率校正寄存器需 参与系统自检校验。
0xE99C	A 相基波有功功率二次补偿 寄存器	WWBPTA	R/W	32-bit 补码	
0xE99D	B 相基波有功功率二次补偿 寄存器	WWBPTB	R/W	32-bit 补码	
0xE99E	C 相基波有功功率二次补偿 寄存器	WWBPTC	R/W	32-bit 补码	
0xE99F	A 相基波无功功率二次补偿 寄存器	WWBQTA	R/W	32-bit 补码	
0xE9A0	B 相基波无功功率二次补偿 寄存器	WWBQTB	R/W	32-bit 补码	
0xE9A1	C 相基波无功功率二次补偿 寄存器	WWBQTC	R/W	32-bit 补码	

1.4.5 门限值寄存器

表 1-38 能量累加门限值寄存器(R/W)

地址	寄存器		R/W	数据格式	说明
0xEC1E	能量累加门限值寄 存器高位	ZZEGYTHH	R/W	32-bit 补码	如果将普通能量累加和脉冲发生电路中的 能量门限设为:TH,则高速能量累加和脉冲
0xEC1F	能量累加门限值寄 存器低位	ZZEGYTHL	R/W	32-bit 补码	发生电路中的能量门限值应为 TH 的 16384 (2^14)倍,所以,在这两个寄存 器中设置能量门限值时,应当将寄存器 ZZEGYTHH 的高 14 位写成 0。 该寄存器需参与系统自检校验。

表 1-39 表 1-40 电流检测门限值寄存器(0xEC1D, ZZDCUM, R/W)

地址	寄存器	R/W	数据格式	说明	
0xEC1D	电流检测门限值 寄存器	ZZDCUM	R/W	24-bit 补码	外部 MCU 通过 32 位总线访问该寄存器,总线低 24 位保存寄存器的数据,高 8 位均等于所读取的 24 位数据的符号位。 该寄存器需要参与自检校验,进行自检校验时,高 8 位为扩展的符号位。

1.5 计量状态寄存器

表 1-41 角差/比差分段信息寄存器(0xC004, PECAEC)

0xC004, R	xC004,R,角差/比差分段信息寄存器,PECAEC							
位		默认值	功能	说明				
Bit[31:22]	保留	-						
				00: 分段 0;				
Bit[21:20]	PECC	-	C相有功功率比差分段信息	01: 分段 1;				
				10: 分段 2				
Bit[19:18]	保留	-						
				00: 分段 0;				
Bit[17:16]	PECB	-	B相有功功率比差分段信息	01: 分段 1;				
				10: 分段 2				
Bit[15:14]	保留	-						
				00: 分段 0;				
Bit[13:12]	PECA	-	A相有功功率比差分段信息	01: 分段 1;				
				10: 分段 2				
Bit11	保留	-						
				000: 分段 0;				
Bit[10:8]	AECC	-	C相角差分段信息	001: 分段 1;				
				010: 分段 2;				

0xC004,R,角差/比差分段信息寄存器,PECAEC						
位		默认值	功能	说明		
				011: 分段 3;		
				100: 分段 4		
Bit7	保留	-				
				000: 分段 0;		
				001: 分段 1;		
Bit[6:4]	AECB	-	B相角差分段信息	010: 分段 2;		
				011: 分段 3;		
				100: 分段 4		
Bit3	保留	-				
				000: 分段 0;		
				001: 分段 1;		
Bit[2:0]	AECA	-	A相角差分段信息	010: 分段 2;		
				011: 分段 3;		
				100: 分段 4		
当电能计量时	「钟频率)	6.5536N		580ms,稳定时间为 500ms。		

1.6 中断寄存器

表 1-42 IRQ0 中断使能寄存器(0xA000, IRQEN0)

0xA000, R/W, IRQ0 中断使能寄存器, IRQEN0						
位		默认值	功能	说明		
bit[31:17]	保留	0				
bit16	PD	0	掉电中断使能, 高电平触发	1: 使能; 0: 禁止		
bit15	SPI	0	SPI 通信异常中断使能,上升沿触发	1: 使能; 0: 禁止		
bit14	PSE	0	相序异常中断使能,上升沿触发	1: 使能; 0: 禁止		
bit13	EXIIC	0	C相电流通道全失压检测中断使能,电平触发	1: 使能; 0: 禁止		
bit12	EXIIB	0	B相电流通道全失压检测中断使能,电平触发	1: 使能; 0: 禁止		

0xA000, R/	<a000, irq0="" irqen0<="" r="" th="" w,="" 中断使能寄存器,=""></a000,>					
位		默认值	功能	说明		
bit11	EXIIA	0	A 相电流通道全失压检测中断使能,电平触发	1: 使能; 0: 禁止		
bit10	CF3	0	高速全波/基波合相视在能量或全波合相无功能量脉冲 (CF3)输出中断使能,上升沿触发	1: 使能; 0: 禁止		
bit9	CF2	0	高速全波/基波合相有功能量脉冲(CF2)输出中断使能, 上升沿触发	1: 使能; 0: 禁止		
bit8	CF1	0	高速全波/基波合相无功能量脉冲(CF1)输出中断使能, 上升沿触发	1: 使能; 0: 禁止		
bit7	CF0	0	高速全波/基波合相有功能量脉冲(CF0)输出中断使能, 上升沿触发	1: 使能; 0: 禁止		
Bit[6:4]	保留	0				
bit3	ZXUC	0	C 相电压通道正向过零点中断使能,沿触发	1: 使能; 0: 禁止		
bit2	ZXUB	0	B相电压通道正向过零点中断使能,沿触发	1: 使能; 0: 禁止		
bit1	ZXUA	0	A 相电压通道正向过零点中断使能,沿触发	1: 使能; 0: 禁止		
bit0	СНК	0	系统参数自检中断使能,电平触发	无论该位配为何值,该 中断始终无法禁止		

MCU 可通过寄存器 ZZIRQ0(0xEC20)读取该寄存器的配置值,并参与自检校验,进行自检校验时,高15 位补0。

表 1-43 IRQ1 中断使能寄存器(0xA001, IRQEN1)

0xA001, R/W, IRQ1 中断使能寄存器, IRQEN1					
位		默认值	功能	说明	
bit[31:17]	保留	0			
bit16	PD	0	掉电中断使能, 高电平触发	1: 使能; 0: 禁止	
bit15	SPI	0	SPI 通信异常中断使能,上升沿触发	1: 使能; 0: 禁止	
bit14	PSE	0	相序异常中断使能,上升沿触发	1: 使能; 0: 禁止	
bit13	EXIIC	0	C相电流通道失压检测中断使能,电平触发	1: 使能; 0: 禁止	
bit12	EXIIB	0	B 相电流通道失压检测中断使能,电平触发	1: 使能; 0: 禁止	
bit11	EXIIA	0	A 相电流通道失压检测中断使能,电平触发	1: 使能; 0: 禁止	
bit10	CF3	0	高速全波/基波合相视在能量或全波合相无功能量脉冲 (CF3)输出中断使能,上升沿触发	1: 使能; 0: 禁止	

0xA001, R/W, IRQ1 中断使能寄存器, IRQEN1

位		默认值	功能	说明	
bit9	CF2	0	高速全波/基波合相有功能量脉冲(CF2)输出中断使能, 上升沿触发	1: 使能; 0: 禁止	
bit8	CF1	0	高速全波/基波合相无功能量脉冲(CF1)输出中断使能, 上升沿触发	1: 使能; 0: 禁止	
bit7	CF0	0	高速全波/基波合相有功能量脉冲(CF0)输出中断使能, 上升沿触发	1: 使能; 0: 禁止	
Bit[6:4]	保留	0		1: 使能; 0: 禁止	
bit3	ZXUC	0	C相电压通道正向过零点中断使能,沿触发	1: 使能; 0: 禁止	
bit2	ZXUB	0	B相电压通道正向过零点中断使能,沿触发	1: 使能; 0: 禁止	
bit1	ZXUA	0	A 相电压通道正向过零点中断使能,沿触发	1: 使能; 0: 禁止	
bit0	СНК	0	系统参数自检中断使能,电平触发	1: 使能; 0: 禁止	

MCU 可通过寄存器 ZZIRQ1 (0xEC21) 读取该寄存器的配置值,并参与自检校验,进行自检校验时,高15 位补0。

表 1-44 中断标志寄存器(0xA002, IRQFLAG)

0xA002, R/W,中断标志寄存器,IRQFLAG					
bit		默认值	功能	说明	
bit[31:17]	保留	0			
bit16	PD	0	掉电中断	1 :发生中断	
bit15	SPI	0	SPI 通信异常中断	1 :发生中断	
bit14	PSE	0	相序异常中断	1: 发生中断	
bit13	EXIIC	0	C相电流通道失压检测中断	1: 发生中断	
bit12	EXIIB	0	B相电流通道失压检测中断	1: 发生中断	
bit11	EXIIA	0	A相电流通道失压检测中断	1 :发生中断	
bit10	CF3	0	高速全波/基波合相视在能量或全波合相无功能量脉冲 (CF3)输出中断	1 : 发生中断	
bit9	CF2	0	高速全波/基波合相有功能量脉冲(CF2)输出中断	1: 发生中断	
bit8	CF1	0	高速全波/基波合相无功能量脉冲(CF1)输出中断	1: 发生中断	
bit7	CF0	0	高速全波/基波合相有功能量脉冲(CFO)输出中断	1: 发生中断	

0xA002, R/W,中断标志寄存器,IRQFLAG					
bit 影		默认值	功能	说明	
Bit[6:4]	保留				
bit3	ZXUC	0	C相电压通道正向过零点中断	1: 发生中断	
bit2	ZXUB	0	B相电压通道正向过零点中断	1: 发生中断	
bit1	ZXUA	0	A 相电压通道正向过零点中断	1: 发生中断	
bit0	СНК	0	系统参数自检中断	1: 发生中断	

第2章 复位

在 V9203 中,发生上电复位(POR),或引脚 RST(Pin42)低电平有效时,所有电路发生复位。

2.1上电复位(POR)

在上电期间, V9203 内部的上电复位电路提供的 POR 复位信号可以保证系统能稳定地复位。该电路始终工作。

上电复位电路监测引脚 DVCC(Pin1)上的输出电平,当 DVCC 的输出电压大于 1.8V 时,复位信号释放,复位状态将保持 244µs。当 DVCC 的输出电压小于 1.8V 时,芯片会一直处于复位状态。复位阈值电平 1.8V 是一个典型值,具体的值会因芯片而异。

2.2 RST 输入复位

RST 输入使用 RC 振荡器时钟进行滤波,以防静电干扰。RST 引脚输入低电平大于 5ms 才有效,复位状态将保持 至少 244µs。

第3章 时钟系统

在 V9203 中,时钟系统包括两个时钟源,包括: RC 振荡电路提供的 RC 时钟,和晶体振荡器提供的晶振时钟。

3.1 RC 振荡器

V9203 内部的 RC 振荡器可以产生一个 32kHz 的 RC 时钟,不可关闭,主要用于对外部信号(引脚 PM0/PM1/RST/DFTEN 上的输入信号)的滤波。

3.2 晶体振荡器

V9203 内部集成了一个晶体振荡电路,用户在引脚 CTO(Pin22)和 CTI(Pin23)上连接一个 13.1072MHz 的 晶体,即可得到晶体振荡器(XT),产生一个 13.1072MHz 的晶振时钟,该时钟经过分频后,产生三个时钟,包括: 32768Hz 的 OSC 时钟、6.5536MHz 的电能计量时钟和 819.2kHz 的 ADC 时钟(如图 3-1 所示)。该电路始终工 作,消耗电流为 0.26mA。

注意:

芯片内部集成的振荡电路中含 10pF 匹配电容(有效电容)。

在片外连接低功耗的13.1072MHz 晶体(负载容量约为8pF)时,片外可不接电容。

在片外连接普通的高功耗 13.1072MHz 晶体(负载容量约为 18pF)时,应先在片个各连接一个 15pF 的电容,再连接入 CTO 和 CTI 引脚。加上电容后,晶体振荡器功耗升高约 36μA。

图 3-1 晶体振荡器(13.1072MHz)

3.2.1 OSC 时钟

13.1072MHz 的晶振时钟始终分频(如图 3-1 中的 Divider0)产生 32768Hz 的 OSC 时钟,供复位电路使用。

3.2.2 时钟分频电路

V9203 内部集成了一个时钟分频电路(图 3-1 中的 Divider1),未开启该电路前,系统使用 32768Hz 的 OSC 时钟工作。

用户可通过将模拟控制寄存器 3(0x8003, ANCtrl3)的 bit[2:0]配置为 0b110, 开启时钟分频电路和电路 BandgapB,将 13.1072MHz 的晶振时钟分频产生并输出 6.5536MHz 的电能计量时钟和 819.2kHz 的 ADC 时钟,分别供电能计量模块和 ADC 采样/角差校正电路使用。

当引脚 PM0/PM1 上输入高电平时,即芯片工作于正常工作模式下时,电能计量时钟频率应为 ADC 时钟频率的 8 倍。

用户应严格按照以下流程进行时钟频率切换:

1. 将系统时钟源切换为 32768Hz 的 OSC 时钟;

- 2. 关闭时钟分频电路;
- **3**. 调整时钟频率;
- 4. 打开时钟分频电路;
- 5. 连接电能计量时钟作为系统时钟源。

第4章 系统状态

V9203 可以处于四种系统状态:

- 启动状态:复位后,系统自动进入启动状态;
- 工作状态:此时系统可工作于不同的功耗模式下,具体情况由引脚 PMO(Pin24)和 PM1(Pin25)的输入信号决定;
- 浅睡眠状态:当引脚 PM0(Pin24)和 PM1(Pin25)均输入低电平(00)时,系统进入浅睡眠状态(一般不推荐 使用);
- 深睡眠状态:当引脚 DEEPSLEEP(Pin19)的输入信号持续高电平超过 4ms 时,系统进入深睡眠状态。

第5章 发生 RST 低电平有效或 POR 复位时,系统中所有

模拟控制寄存器均被复位为默认值,所有的模拟电路和电能计量电路均处于关闭状态;之后,模拟控制寄存器 2 (0x8002,ANCtrl2)的 bit[31:24]配置为 0b11111111,开启 7 路 ADC 通道;模拟控制寄存器 3 (0x8003,ANCtrl3)的 bit[2:0]自动配置为 0b101,开启时钟分频电路,并输出 6.5536MHz 电能计量时钟和 819.2kHz 的 ADC 时钟,488µs 后,系统进入工作状态。用户需要将模拟控制寄存器 2 (0x8002, ANCtrl2)的 bit[31]配置为 0b0。

5.1工作状态

在工作状态中,系统使用 6.5536MHz 的电能计量时钟作为时钟源,但是,用户也可以通过将模拟控制寄存器 3 (0x8003, ANCtrl3)的 bit2 清零,关闭时钟分频电路,从而将系统时钟源切换为 32768Hz 的 OSC 时钟。

根据引脚 PMO(Pin24)和 PM1(Pin25)的输入信号不同, V9203 可工作于三种不同工作模式下。

当系统工作于模式 1/2/3 时,用户可对模拟控制寄存器进行配置,使系统进入降频工作模式,从而降低系统的整体功耗。具体配置方法如下。

表 5-1 降频计量模式配置

寄存器	bit		配置	
	Bit[19:18]	ADCLKSEL<1:0>	0b10: ADC 时钟频率为 204.8kHz。	
模 拟 控 制 寄 存 器 3 (0x8003, ANCtrl3)	Bit[17:16]	MEACLKSEL<1:0>	模式 1 (停电全失压预判断模式) 和模式 2 (电流有 效值计量)时,配置为 0b11:电能计量时钟频率为 819.2kHz; 模式 3 (正常工作)时,配置为 0b10:电能计量时钟 频率为 1.6384MHz。	
模 拟 控 制 寄 存 器 2 (0x8002, ANCtrl2)	Bit[17:16]	CURRIT<1:0>	0b11:模拟电路偏置电流减小75%。	

表 5-2 工作状态的三种工作模式

模式	PM0	PM1	工作模式说明	功耗
模式 1, 停 电 全 失 压 预 判断	1	0	模拟电路中, 仅有 RC 振荡器、晶体振荡器、数字供电电路、三路电流通道 ADC、时钟分频电路和带隙准电压源电路(Bandgap)开启,其余电路均关闭。 数字电路中, 仅时钟管理电路、复位电路和外部信号(引脚 PM0/PM1/RST/DFTEN 上的输入信号)滤波电路、角差校正电	降频计量时,消耗电 流 1.65mA,响应时 间小于 20ms

			路、抽取滤波器、电流检测电路、中断系统和 SPI 接口开启,其 它均进入休眠状态(此时, SPI 接口无法正常通讯)。 当 IRQ0 中断使能寄存器(0xA000, IRQEN0)和/或 IRQ1 中 断使能寄存器(0xA001, IRQEN1)中的 bit[13:11]中的某个 bit 被置位时,如果相应通道检测到电流信号,则系统产生电流通 道全失压检测中断,中断标志寄存器(0xA002, IRQFLAG)中 的相应中断标志位置位,引脚 IRQ0和/或 IRQ1(Pin30和/或 Pin31)上输出高电平,向外部 MCU 提起中断,表明电流信号足 以进行计量。	
模式 2, 电 流 有 效 值 计 量	0	1	模拟电路中仅有 RC 振荡器、晶体振荡器、数字供电电路、三路 电流通道 ADC、时钟分频电路和 Bandgap 电路工作,其余电路 均关闭。 数字电路中仅时钟管理电路、复位电路和外部信号(引脚 PM0/PM1/RST/DFTEN上的输入信号)滤波电路、角差校正电 路、抽取滤波器、全波/基波有效值/功率(有功/无功/视在)/功 率因数计算电路、普通/高速能量累加和脉冲发生电路、去直流电 路、电流检测电路、频率/相位测量电路、中断系统和 SPI 接口 开启,其它均进入休眠状态。	全速工作时,消耗电 流 5.1mA,响应时间 小于 135ms; 降频计量时,消耗电 流 2.2mA
模式 3 , 正 常 工 作	1	1	按照模拟控制寄存器的配置工作;数字电路的全部模块均正常工作。 除模拟控制寄存器外,其它寄存器均需在此模式下进行配置。	全速工作时,开启6路 ADC 时,消耗电流 9.16mA;开启7路 ADC 时,消耗电流 9.9mA。 降频计量时,开启6路 ADC 时,消耗电流 3.21mA
注意: 用/	^ጏ 仅需通	过切换两	个引脚 PMO 和 PM1 上的输入信号即可完成三种功耗模式的切换。	

第6章 模拟电路

6.1 浅睡眠状态

当 V9203 正常工作时,如果引脚 PM0(Pin24)和 PM1(Pin25)均输入低电平(00),系统时钟源被切换为 32768Hz 的 OSC 时钟,所有 ADC 通道被关闭。488µs 后,系统进入浅睡眠状态(一般不推荐使用)。

此时,时钟分频电路关闭;模拟电路中仅有 RC 振荡器、晶体振荡器和数字供电电路工作,其余的均关闭;数字电路 中仅时钟管理电路、复位电路和外部信号(引脚 PM0/PM1/RST/DFTEN 上的输入信号)滤波电路工作,其余均进入休 眠状态;数据存储器 RAM 和寄存器的配置保持不变;系统进入低功耗状态,消耗电流为 273µA。此时,如果引脚 PM0 (Pin24)或/和 PM1 (Pin25)输入高电平,则系统进入唤醒流程。

唤醒过程中,时钟分频电路开启(此时,ADC 仍关闭),系统时钟源切换为 6.5536MHz 的电能计量时钟,ADC 采 样和角差校正电路使用为 819.2kHz 的 ADC 时钟。488µs 后,系统进入工作状态,完成唤醒流程。

6.2 深睡眠状态

当引脚 DEEPSLEEP(Pin19)的输入信号持续高电平(1)超过 4ms 时,系统进入深睡眠状态。

此时,数字供电电路关闭,数字电路电源被拉低到 0V。仅 RC 振荡器正常工作。在此状态下,系统的功耗为 0.19µA。 只有当引脚 DEEPSLEEP(Pin19)上的输入信号持续低电平(0)超过 4ms 时,系统才进入启动状态。

第7章 电源系统

V9203 电源系统有以下几个特点:

- 3.3V 单电源供电,电压输入范围: 2.6~3.6V;
- 数字供电电路为内部数字电路和时钟分频电路供电;
- 支持掉电监测;
- 支持上电复位 (**POR**)

7.1 数字电源电路

V9203 内部集成了一个数字电源电路(DVCC),在掉电状态下能正常工作,从而保证其在电池电压大幅变化的情况下也能稳定地为内部的数字电路和时钟分频电路供电。该电路在片外需连接一个由一个 10µF 和一个 0.1µF 的去耦电容组成的并联电路。

数字电源电路具有 35mA 的驱动能力,即,当数字电路上的负载电流小于 35mA 时,该电路能保持稳定的电压输出;当负载电流大于 35mA 时,该电路的输出电压会随着负载电流的增加而明显下降。

7.2 掉电监测电路

V9203 内置掉电监测电路,可以实时监测引脚 VDCIN (Pin17) 的输入信号。

当VDCIN 引脚上的电平低于 1V 时,掉电监测电路输出高电平,向外部 MCU 通知系统已经开始掉电。当 IRQ0 中断使能寄存器(0xA000, IRQEN0)或 IRQ1 中断使能寄存器(0xA001, IRQEN1)中的 bit16 置位(掉电中断使能)时,中断标志寄存器(0xA002, IRQFLAG)中的 bit16 置位,系统向外部 MCU 提起掉电中断,同时在引脚 IRQ0(Pin30)或 IRQ1(Pin31)上输出高电平。

第8章 带隙基准电压源电路(Bandgap)

带隙基准电压源电路(Bandgap)输出一个随温度变化较小的(典型温度漂移 10ppm/°C),约 1.185V 的基准 电压,为 ADC 提供基准电压和电流(在开启这些电路之前应先开启 Bandgap 电路)。该电路消耗电流 0.1mA。

复位后,488µs 后,模拟控制寄存器 3 (0x8003, ANCtrl3)的 bit[2:0]自动配置为 0b101,开启时钟分频电路 和带隙基准电压源电路 A,关闭带隙基准电压源电路 B。之后,建议用户开启 BandgapB 电路,关闭 BandgapA 电路,即,将 bit[2:0]配置为 0b110,因为 BandgapB 电路有更好的温度性能。

该基准电压温度特性通过以下三方面进行调整(无先后顺序要求):

- 1. 将模拟控制寄存器 3 (0x8003, ANCtrl3) 中的 bit1 配置为 1, 开启 BandgapB 电路;
- 默认情况下,Bandgap 电路的斩波功能开启[模拟控制寄存器 2(0x8002,ANCtrl2)的 bit8。该功能可以消除 Bandgap 电路的直流偏置,有效开启后,Bandgap 的输出值发生-50~+50mV 不等的变化,并且可以改善温度 系数约 5ppm。
- 3. 通过配置模拟控制寄存器 2(0x8002, ANCtrl2)中的 bit[15:13]和 bit[12:11]对 Bandgap 电路的温度系数进行调整,以便与片外元器件带来的温度系数相抵消。建议配置如下:

表 8-1 Bandgap 电路温度系数调整

寄存器	bit		配置
描圳坎圳安方 및 3 (0,∨9003 _ 4,№C++/3)	Bit[15:13]	REST<2:0>	0b010
医纵径前可任备 Z(UXOUUZ,ANCUIZ)	Bit[12:11]	RESTL<1:0>	0b10

第9章 SPI 接口

V9203 通过一组 SPI 接口与外部 MCU 通信。这组 SPI 接口包括: SPCS(Pin38)/SPCK(Pin39)/MISO(Pin40) /MOSI (Pin41)。

图 9-1 V9203 与外部 MCU 进行 SPI 通信

注意: V9203 的 SPI 从机模式固定为模式 3 (时钟相位为 1,时钟极性为 1)。

注意:当 SPCS 为低电平时, MISO、MOSI、SPCK 作为正常的 SPI 口使用。当 SPCS 为高电平时, SPCK 作为输入、MOSI 作为输入、MISO 作为输出, MISO 的电平状态与 MOSI 电平状态保持一致。

9.1 数据帧结构

SPI 接口采用固定长度的数据帧进行通信。如图 9-2 所示, SPI 接口接收和发送 32-bit 数据帧,包括:

- 开始位(2 bits, bit[31:30]=0b10);
- 命令区(CMD, 6 bits, bit[29:24]);
- 数据区(DATA H 和 DATA L, 16 bits, bit[23:8]);
- 校验和(CKSUM, 8 bits, bit[7:0])。

图 9-2 SPI 通信的数据帧

表 9-1 数据帧组成说明

数据帧		说明
开始位	Bit31~bit30	在每一个 SPCK 的上升沿, MOSI 端口上的一位数据将移位进入 SPI 接口, 在 SPCK 的下降沿, MISO 输出一位数据。在连续两个 SPCK 的上升沿, MOSI 上的数据分别为高电 平和低电平,即 MOSI 上的"10"为开始位。
命令区	Bit29~bit24	决定当前数据帧的作用。移位进入 MOSI, 或从 MISO 上输出时, MSB 在前, LSB 在后。
数据区	Bit23~bit8	根据当前数据帧中的命令发送的数据。移位进入 MOSI,或从 MISO 上输出时, MSB 在前,LSB 在后。
校验和	Bit7~bit0	当前数据帧中 Bit[31:8]按照字节累加并对累加和进行取反操作得到的校验值。移位进入 MOSI,或从 MISO 上输出时, MSB 在前, LSB 在后。

表 9-2 命令区与数据帧的作用对应表

CMD		说明		
0b001000	0x08	写 SPI 缓存低 16-bit		
0b001010	0x0A	写 SPI 缓存高 16-bit		
0b001100	0x0C	写操作的目标地址		
0b010000	0x10	读操作的目标地址		
0b010010	0x12	读出目标数据低 16-bit		
0b010100	0x14	读出目标数据高 16-bit		
0b001110	0x0E	读出 SPI 存储的上一次操作的地址		
0b010110	0x16	读出 SPI 存储的上一次操作数据低 16-bit		
0b011000	0x18	读出 SPI 存储的上一次操作数据高 16-bit		

9.2 写操作

当 V9203 作为 SPI 通信协议的从机时,外部 MCU 对其进行一个 32-bit 数据的写操作需要 3 个数据帧完成,对一 个 16-bit 或 8-bit 数据的写操作需要 2 个数据帧完成。以对一个 32-bit 数据的写操作为例:

- 第一个数据帧使用 0x08 命令,数据区给出 32-bit 目标数据的低 16-bit。在最后一个 SPCK(即第 32 个 SPCK) 的上升沿,该帧数据区的 16-bit 数据被写入 SPI 缓存的低 16-bit。
- 5. 第二个数据帧使用 0x0A 命令,数据区给出 32-bit 目标数据的高 16-bit。在最后一个 SPCK(即第 32 个 SPCK)的上升沿,该帧数据区的 16-bit 数据被写入 SPI 缓存的高 16-bit。
- 第三个数据帧使用 0x0C 命令,数据区给出写操作的目标地址。这一个数据帧接收结束的时候写操作生效,把上两个 数据帧给出的 32-bit 数据写入目标地址。

上述三个数据帧的校验和都需要外部 MCU 发出,如果 V9203 的 SPI 接口对接收到的当前数据帧校验时发生错误,则,当前数据帧无效,如果此时 IRQ0 中断使能寄存器 (0xA000, IRQEN0) 或 IRQ1 中断使能寄存器 (0xA001, IRQEN1)中的 bit15(SPI)置位,即 SPI 通信异常中断使能,则,中断标志寄存器(0xA002, IRQFLAG)中的 bit15 (SPI)置标志位,同时引脚 IRQ0 或 IRQ1 输出高电平。

在写操作过程中, MISO 在 SPCK 的下降沿输出当前 MOSI 的值,即 MOSI 直接输出到 MISO。外部 MCU 可以依 靠引脚 IRQ0 或 IRQ1 上的输出电平以及中断标志寄存器(0xA002, IRQFLAG)中的 bit15(SPI),或者读回 MISO 的值来判断 SPI 接口是否正确接收到了数据。

9.3 读操作

当 V9203 作为 SPI 通信协议的从机时,外部 MCU 对其内部一个 32-bit 数据的读操作需要 3 个数据帧,对一个 16-bit 或 8-bit 数据的读操作需要 2 个数据帧。以对一个 32-bit 数据的读操作为例:

- 第一个数据帧使用 0x10 命令,数据区给出目标地址,校验和给出此数据帧的校验和。这个数据帧的校验和需要外部 MCU 发出。
- 2. 第二个数据帧使用 0x12 命令,读出目标数据低 16-bit。在第 1 ~ 第 8 个 SPCK 的下降沿,MISO 上输出当前 MOSI 的数据,即外部 MCU 发送过来的开始位(0b10)以及命令(CMD)直接在 MISO 上输出;从第 9 个 SPCK 的下降沿开始,MISO 上输出目标数据(DATA),即第 9 ~ 第 24 个 SPCK 的下降沿上输出目标数据的低 16-bit;第 25 ~ 第 32 个 SPCK 的下降沿上,MISO 输出 SPI 接口计算出的校验和(CKSUM)。在第 9 ~ 第 32 个 SPCK 上,SPI 接口不关心 MOSI 上的输入数据。外部 MCU 读回 MISO 输出的数据,可以组成一个完整的数据帧,进行 校验以便判断接收过程是否正确。
- 3. 第三个数据帧使用 0x14 命令,读出目标数据高 16-bit。在第 1 ~ 第 8 个 SPCK 的下降沿,MISO 上输出当前 MOSI 的数据,即外部 MCU 发送过来的开始位(0b10)以及命令(CMD)直接在 MISO 上输出;从第 9 个 SPCK 的下降沿开始,MISO 上输出目标数据(DATA),即第 9 ~ 第 24 个 SPCK 的下降沿上输出目标数据的高 16-bit;第 25 ~ 第 32 个 SPCK 的下降沿上,MISO 输出 SPI 接口计算出的校验和(CKSUM)。在第 9 ~ 第 32 个 SPCK 上,SPI 接口不关心 MOSI 上的输入数据。外部 MCU 读回 MISO 输出的数据,可以组成一个完整的数据帧,进行 校验以便判断接收过程是否正确。

图 9-4 SPI 读操作时序

9.4检查上一次读/写操作

外部 MCU 可以再次查看上一次操作的操作数或者结果。

如果上一次操作是读操作或写操作,则:

1. 第一个数据帧使用 0x0E 命令,读出上一次读操作或写操作的目标地址,读出过程同 0x12 或 0x14 命令;

2. 第二个数据帧使用 0x16 命令,读出上一次读操作或写操作的目标数据低 16-bit,读出过程同 0x12 或 0x14 命令;

3. 第三个数据帧使用 0x18 命令,读出上一次读操作或写操作的目标数据高 16-bit,读出过程同 0x12 或 0x14 命令。

9.5 通信数据校验

数据帧中的 Bit[7:0]为校验和,是当前数据帧中 Bit[31:8]按照字节累加并对累加和进行取反操作得到的校验值。

在写操作过程中,每一个数据帧的校验和都需要外部 MCU 发出,如果 SPI 接口对接收到的当前数据帧进行校验发 生错误,当前数据帧无效,此时,如果 IRQ0 中断使能寄存器(0xA000, IRQEN0)或 IRQ1 中断使能寄存器(0xA001, IRQEN1)中的 bit15(SPI)置位,即 SPI 通信异常中断使能,则,中断标志寄存器(0xA002, IRQFLAG)中的 bit15 (SPI)置标志位,同时引脚 IRQ0或 IRQ1 输出高电平。

寄存器	位		说明	
IRQEN0, 0xA000	Bit15	SPI	SPI 通信异常中断使能,上升沿触发	
IRQEN1, 0xA001	Bit15	SPI	SPI 通信异常中断使能,上升沿触发	
IRQFLAG, 0xA002	Bit15	SPI	SPI 通信异常中断。1:发生中断	

表 9-3 SPI 通信中断使能位和中断标志

在写操作过程中, MISO 在 SPCK 的下降沿输出当前 MOSI 的值,即 MOSI 直接输出到 MISO。外部 MCU 可以依 靠引脚 IRQ0 或 IRQ1 上的输出电平以及中断标志寄存器(0xA002, IRQFLAG)中的 bit15(SPI),或者读回 MISO 的值来判断 SPI 接口是否正确接收到了数据。

在读操作过程中,第一个数据帧给出目标地址,这个数据帧的校验和需要外部 MCU 发出。在用 0×08/0×0A/0×0C/0×10 命令的数据帧中,校验和需要外部 MCU 发出。

在其他使用 0x12/0x14/0x0E/0x16/0x18 的数据帧中,发生的都是读出操作,数据区以及校验和都是由 V9203 发出,外部 MCU 接收数据组成一个完整的数据帧后,进行数据校验以便判断接收过程是否正确。

9.6 SPI 接口复位

在 V9203 中,用户可通过三种方法复位 SPI 接口。

当引脚RST(Pin42)上持续输入低电平超5ms时,SPI接口的缓存会被清零,同时SPI接口被复位。

当引脚 SPCS(Pin38)输入高电平时,SPI 接口被复位,且没有发生 RST 输入复位时,MISO 接口输出电平状态 与 MOSI 的输入电平状态保持一致。当引脚 SPCS(Pin38)输入低电平时,且没有发生 RST 输入复位时,SPI 接口可 以正常工作。

当引脚 SPCS(Pin38)输入低电平时,如果连续 32 个 SPCK 时钟内,在 MOSI上均输入高电平,则 SPI 接口回 到空闲状态, MISO 输出低电平。

9.7 其他高级命令

SPI 接口内部有 4 个滤波电路,用户可以通过不同的命令选择不同的滤波电路。默认情况下, SPI 接口内部默认使用滤波电路 0, SPCK 的速度小于 409.6kHz。在满足速度限制的 SPCK 频率下,可以发出不同的命令选择合适的滤波电路。

滤波电路的输入端口标记为"din";输出端口标记为"dout"。

滤波电路 0 的原理是,利用一个 8-bit 的寄存器存放最新进入的 din 端口的 8-bit 数据,若寄存器中 8-bit 全为 1,则 dout 端口输出 1,若寄存器中 8-bit 全为 0,则 dout 端口输出 0,其它情况下,dout 端口的输出保持不变。

滤波电路1没有滤波作用, dout 端口口的输出等于 din 端口的输入。

滤波电路 2 的原理是,利用一个 5-bit 的寄存器来存放最新进入 din 端口的 5-bit 数据,若 dout 端口当前输出为 0,那么只有当寄存器的 5-bit 中有 3 个或以上的 bit 为 1 时,dout 端口才会输出 1;若 dout 端口当前输出为 1,那 么,只有当寄存器的 5-bit 中只有 1-bit 为 1 或者没有 1,dout 端口才会输出 0;其它情况下,dout 端口的输出保持 不变。

滤波电路 3 的原理是,利用一个 32-bit 的寄存器来存放最新进入 din 端口的 32-bit 数据,若 dout 端口当前输出 0,那么,只有当寄存器的 32-bit 中有 24 个或以上的 bit 为 1 时,dout 端口才会输出 1;若 dout 端口当前输出 1,那么,只有当寄存器的 32-bit 中只有 8 个或以下的 bit 为 1 时,dout 端口输出 0;其它情况下,dout 端口的输出保持不变。

表 9-4 选择 SPI 接口内部滤波电路

D:+[21,20]	Bit[29:24]	Bit[23:16]	Bit[15:8]	Bit[7:0]	说明
BIT[31:30]	CMD	DATA H	DATA L	CKSUM	

0b10	0x10	0xFC	不限	由外部 MCU 计算	使用滤波电路 1
0b10	0x10	0xFB	不限	由外部 MCU 计算	使用滤波电路 2
0b10	0x10	0xFA	不限	由外部 MCU 计算	使用滤波电路 3
0b10	0x10	0xF9	不限	由外部 MCU 计算	使用滤波电路 0

由本表可知,与 SPI 接口连接的模块的寄存器的高 8 位地址不能使用 0xFC/0xFB/0xFA/0xF9。因为,如果寄存器 地址的高 8 位为 0xFC/FB/FA/F9,则,外部 MCU 在对这些寄存器进行读操作的同时,也会切换 SPI 接口内部的滤 波电路。

表	9-5	系统时钟频率与滤波后的 SPI 接口最大通信速率
---	-----	--------------------------

至依叶铀频变	滤波后的 SPI 接口最大通信速率					
永 切时 伊 频 平	滤波电路 0	滤波电路 1	滤波电路 2	滤波电路 3		
6.5536MHz	409.6 kHz	6.5536 MHz	655.36 kHz	102.4 kHz		
3.2768MHz	204.8 kHz	3.2768 MHz	327.68 kHz	51.2 kHz		
1.6384MHz	102.4 kHz	1.6384 MHz	163.84 kHz	25.6 kHz		
819.2kHz	51.2 kHz	819.2 kHz	81.92 kHz	12.8 kHz		
32.768kHz	2.048 kHz	32.768 kHz	3.2768 kHz	512 Hz		
第10章电能计量

图 10-1 电能计量模块信号处理流程

正常工作时,电能计量模块时钟频率为 6553.6kHz, ADC 时钟频率为 819.2kHz。

10.1 数据存储器 RAM

V9203 电能计量模块包括数据存储器 RAM,地址范围详见表 10-1 电能计量模块数据存储器 RAM。

外部 MCU 通过 32 位数据总线对数据存储器 RAM 进行访问,而不同范围的 RAM 的地址长度不同,所以,外部 MCU 需要采用不同的方式对这些 RAM 的进行读写访问,详见表 10-1 电能计量模块数据存储器 RAM。

表 10-1 电能计量模块数据存储器 RAM

地址范围	长度	内容	读操作	写操作
0xC800~0xC837	32-bit	保留。计量模块初始	记时,应将计量控制寄存器 0(0x	C000, MTPARA0) 配置为
0xC880~0xC8B7	32-bit	0x10000000,向 RAM 写入 0,清空词	0xC800~0xC837 和 0xC880~0x 该地址范围的数据存储器 RAM 的内容	(C8B7 范围内的数据存储器 5。
0xD000~0xD00B	32-bit	高速电路能量累加 寄存器和能量脉冲 计数器	直接读取某一地址的 32-bit 数据	直接向某一地址写入 32- bit 数据
0xE000~0xE08F	48-bit	保留。为了保证系统	正常工作,不可对该范围内的 RAM	进行读写。

0xE800~0xE9A7	32-bit	计量数据寄存器和 校表参数寄存器	直接读取某一地址的 32-bit 数据	直接向某一地址写入 32- bit 数据		
0xE9A8~0xEAB7	32-bit	保留。为了保证系统	保留。为了保证系统正常工作,不可对该范围内的 RAM 进行读写。			
0xEC00~0xEC52	32-bit	计量配置和计量状 态寄存器	直接读取某一地址的 32-bit 数据	直接向某一地址写入 32- bit 数据		
0xF000~0xF02B	48-bit	保留。为了保证系统正常工作,不可对该范围内的 RAM 进行读写。				
0xF02C~0xF032	24-bit	各通道信号的直流 分量寄存器	均通过 32 位总线访问这 7 个寄存 器,总线低 24 位保存寄存器的数 据,其中 BIT23 是符号位,高 8 位 均为所读取的 24 位数据的符号位 扩展。	均通过 32 位总线访问这 7 个寄存器,总线低 24 位保 存寄存器的数据,其中 BIT23 是符号位,高 8 位 均为所读取的 24 位数据的 符号位扩展。		
0xF034~0xF1EF	48-bit	保留。为了保证系统	保留。为了保证系统正常工作,不可对该范围内的 RAM 进行读写。			
0xF800~0xF87F	24-bit	保留。为了保证系统	保留。为了保证系统正常工作,不可对该范围内的 RAM 进行读写。			

		/		EA
				E9
			一分段角差 功率比差/二次补偿 有效值比差/二次补偿	E9.
				E9
			全波UM平均电压有效值(OA/OB/OC)	
				Ē
			全波平均电压有效值(UA/UB/UC)	Eg
				-E9
			至极于场电压有双直(04/06/06)	
			基波十均有功/无功/优仕功率(A/D/C/合相)	
			基波平均电流/电压有效值(A/B/C)	
			基波平均功率因数(A/B/C/ 合相)	
			基波平均视在功率(A/B/C)	
			全波平均有功/视在/无功功率(A/B/C/合相)	
			全波平均功率因数(A/B/C/ 合相)	E8
			能量累加寄存器	E8
			启动/潜动门限值	E8 E8
				E8
			脉冲计数器 	
			至似日相忧让功平	
			基波申压/申流有效值(A/B/C)	
			 其波王功功变(////// // ()	E8 E8
			金钗儿初为中(日日)	
			**************************************	E8
h			基波有切切率(A/B/C/合相)	
h			基波IA/IB/IC电流信号	
	直流分量寄存器			
	(A/B/C/IN)		基波功率因数(A/B/C/ 合相)	
h	, , , ,		基波视在功率	
h			基波合相有功/无功功率绝对值	E8
"	计量配置寄存器		全波UM通道信号 会相视在功率	
	计量状态客存器		н прен-мут	Ē
p	们 <u>重</u> 伙心司门 册			
h h				
h	计昰粉捉实方哭			
	们 里 奴 加 可 行 储			
h	仪衣参奴句什奋			E8
h				
ĥ		\backslash	主	
		\backslash	全波视在功率(A/B/C)	
		\backslash	全波IA/IB/IC电流信号	
n		\backslash		
		\backslash		$- _{E8}^{E8}$
		\backslash	エムノ金ムの十四風(ロリワ日相)	
		`	基油右th/手ththa (A/B/C)	

图 10-2 RAM 空间分配

表 10-2 计量数据

				全波,	全波/基波				
	原 始 波形	直 流 分量	有效值及 平 均 (RMS)	有功功率代数值/绝 对值/平均值(Watt)	无功功率代数值/绝 对值/平均值(VAR)	视在功率 及 平 均 (VA)	相位	信 号 频率	功 率 因数
A 相电流 (IA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B 相电流 (IB)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C 相电流 (IC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
A 相电压 (UA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	\checkmark	\checkmark
B 相电压 (UB)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C 相电压 (UC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
零线电流 (IN)	\checkmark	\checkmark	\checkmark	x	x	x	x	x	x
合相	х	х	х	\checkmark	\checkmark	\checkmark	х	х	\checkmark

10.2 电压/电流模拟信号输入

✔9203 支持三相电流和一路零线电流信号输入。

三相电流和一路零线电流均可以采用电流传感器(CT, Current Transformer)输入信号,采用双端完全差动输入 方式。三相电流也可以采用罗氏线圈等 di/dt 传感器输入信号,接线方法与 CT 相似。两种接线方式如图 10-3 所示。

图 10-3 电流输入方式

V9203 支持三相电压信号输入,采用电压互感器方式和电阻分压方式输入信号,采用伪差分输入方式,相对于 UN 接地,UP 为正端。

图 10-4 电压输入方式

在 V9203 中,电流通道信号输入来自电流传感器 (CT) 或 di/dt 传感器,电压通道的信号输入来自电阻分压或电 压传感器 (PT),单个信号引脚输入的最大电压范围是±200mV,双端差分输入的最大信号是±400mV,而 ADC 的满 量程信号是±1.1V,所以,为了使传感器输出信号与模数转换器(以下简称 ADC)之间的量程相匹配,用户应通过模拟 控制寄存器 0 (0x8000, ANCtrl0)对电流通道和电压通道进行模拟增益配置,而片外输入电压与 PGA 的乘积不能超 过 ADC 的满量程信号,即±1.1V。经此处理,各通道的模拟信号变为:

 $Ua' = PGAua \times Aua \times sin \omega t$ $Ia' = PGAia \times Aia \times sin(\omega t + \psi)$ 其中,PGAua 和 PGAia 分别是 A 相电压和电流的模拟增益,Aua 和 Aia 为输入信号的幅度(V)。

在工作模式3(停电全失压预判断模式)下,电流信号的模拟增益建议配置为32倍。

表 10-3 模拟增益配置

寄存器	位		说明
			UC 通道的模拟增益控制
	Di+1 0	0.10	0: ×1;
	DILIO	GUC	1: ×2°
			建议配置为2倍。
			UB 通道的模拟增益控制
	Bi+1 7	CUR	0: ×1;
	DILI7	GOB	1: ×2°
			建议配置为2倍。
			UA 通道的模拟增益控制
	Ri+16	CUA	0: ×1;
	bitto	GUA	1: ×2.
			建议配置为2倍。
ANCtrl0, 0x8000	Bit[14:12]	GIN<2:0>	IN 通道的模拟增益控制
0x8000			000: ×2;
			001: ×4;
			010: ×16;
			011: ×32;
			100/101/110/111: ×32
			IC 通道的模拟增益控制
			000: ×2;
	D:+[10.0]		001: ×4;
	BI[[10:8]	GIC<2:0>	010: ×16;
			011: ×32;
			100/101/110/111: ×32
	Bit[6:4]	GIB<2:0>	IB 通道的模拟增益控制

		000: ×2;
		001: ×4;
		010: ×16;
		011: ×32;
		100/101/110/111: ×32
		IA 通道的模拟增益控制
		000: ×2;
DH[2,0]		001: ×4;
BIT[2:0]	GIA<2:U>	010: ×16;
		011: ×32;
		100/101/110/111: ×32

图 10-5 电压/电流信号模拟增益控制

10.3 模拟/数字转换

V9203 中 7 路通道的 ADC 都采用二阶的 Σ-ΔADC 结构,其满量程输入范围是±1.1V。用户可通过模拟控制寄存器 2(0x8002, ANCtrl2)开启或关闭各路通道 ADC。

表 10-4 开启/关闭电压/电流通道 ADC

寄存器	位		功能说明		
	Bit31	保留	必须配置为 0	0:关闭;	
	Bit30	ADPDUCN	开关 C 相电压通道(UC)ADC	1 : 打开	
	Bit29	ADPDUBN	开关 B 相电压通道(UB) ADC	复位后, 976µs 后,	
模拟控制寄存器 2	Bit28	ADPDUAN	开关A相电压通道(UA)ADC	bit[31:24] 自动配置为	
(0x8002, ANCtrl2)	Bit27	ADPDINN	开关零线电流通道(IN)ADC	0b11111111, 其中	
	Bit26	ADPDICN	开关C相电流通道(IC)ADC	道。自动配置完成后,应将	
	Bit25	ADPDIBN	开关 B 相电流通道(IB)ADC	bit31清零,否则影响ADC	
	Bit24	ADPDIAN	开关A相电流通道(IA)ADC	性能。	

ADC 时钟频率由模拟控制寄存器 3(0x8003, ANCtrl3)中的 bit[19:18]决定。默认状态下, ADC 时钟频率为电能计量时钟频率的 1/8,即,电能计量时钟频率为 6553.6MHz, ADC 时钟频率为 819.2kHz。

表 10-5 ADC 时钟频率配置

寄存器	位		功能说明
模 拟 控 制 寄 存 器 3 (0x8003, ANCtrl3)	Bit[19:18]	ADCLKSEL<1:0>	 ADC 时钟频率选择,以 204.8kHz 为基准。 00: ×4; 01: ×8; 10: ×1; 11: ×2 当引脚 PM0/PM1 输入高电平时,电能计量时钟频 率应为 ADC 时钟频率的 8 倍。

经过模拟/数字转换器,各通道的模拟输入信号转换为 24_22 的数字信号,即,数据位数为 24-bit,其中,bit23 和 bit22 为符号位。如果 bit[21:0]的值对应为整数 A,则此数据对应的数字信号的值为 A/2^22(十进制,表示[-2,+2]范围内的一个数)。

模拟信号经 ADC 转换为数字信号后被输入角差校正模块进行角差校正,以消除因采样电路和 ADC 的失配引起的电压/电流信号之间的相位差。

10.4 角差校正

在理想条件下,输入芯片的一组电压/电流信号可以表现为下面形式:

 $I(t) = I \times sin(\omega t)$

 $U(t) = U \times sin(\omega t)$,即电压/电流应当同频同相。

但是由于采样电路、ADC 转换电路的失配,很有可能导致进入芯片的电压/电流信号之间存在相位差。即电压电流 表示为如下:

 $I(t) = I \times sin(\omega t)$

 $U(t) = U \times sin(\omega t + \delta)$,这里的 δ 即为电压电流之间的角差,角差的存在会导致能量计量偏小。

V9203 设计中,采用寄存器链对其中一路信号进行调整延时改变信号的相位。如图 10-6 所示,每组电压/电流信 号输入一个由延时链组成的角差校正电路,根据电压和电流之间的相位超前或滞后关系,配置为电压被延迟或电流被延迟,因此角差校正的最小分辨率就是延迟链上两个相邻单元之间的相位差,而总的角差校正角度是最小分辨率与延迟链的长度之积。

当 ADC 时钟频率为 819.2kHz 时,输入的 ADC 信号频率为 50×16384,即每个周波有 16384 个采样点。角差 调整的粒度为 1 个采样点,即最小调整步长为 0.022 度,因为寄存器链长度为 128,所以,最大延时相位为 2.8 度, 两路信号可以任选一路进行延时,因此最终角差调整电路的调整范围是±2.8 度。

寄存器	位		功能说明
计量控制寄存器 0 (0xC000, MTPARA0), R/W	Bit[12:8]	MSKA	该寄存器的值决定全波角差分段基波电流门限值的回差值。默 认为 0。 比如:如果 MSKA 的值为 8,上述电流门限值为 0xabcd,则 该电流门限值的后 8 个比特表示回差范围,即上门限值为 0xabff,下门限值为 0xab00。
计量控制寄存器 2 (0xC002, MTPARA2), R/W	Bit24	AECEN	角差分段使能,默认为 O。 1:禁止; O:使能
分段角差寄存器(R/W)	Bit[23:0]		地址范围: 0xE954~0xE958。设置各相的角差校正值。其中, bit23/bit15/bit7 为各相角差校正值的符号位。
角差分段电流门限值寄存器(R/W)	32-bit		地址范围: 0×E97C~0×E987 设置各相角差分段电流门限值。
角差/比差分段信息寄存器 (0xC004, PECAEC), R	Bit[10:8]	AECC	C 相角差分段信息 000:分段 0; 001:分段 1; 010:分段 2; 011:分段 3;

表 10-6 角差校正相关寄存器

寄存器	位		功能说明	
			100: 分段 4	
			B相角差分段信息	
			000:分段 0;	
	DH[C: 4]		001: 分段 1;	
	BIT[6:4]	AECB	010: 分段 2;	
			011: 分段 3;	
			100: 分段 4	
			A相角差分段信息	
			000: 分段 0;	
			001: 分段 1;	
	Bit[2:0]	AECA	010: 分段 2;	
			011: 分段 3;	
			100: 分段 4	

图 10-6 角差校正原理图

为了实现较大的动态范围,V9203的设计中采用了角差分段补偿的设计,共设计5个工作区段,如图 10-7所示。 用户可通过计量控制寄存器 2(0xC002, MTPARA2)中的 bit24 使能或关闭角差分段功能。默认情况下,角差分段使能。

图 10-7 角差分段补偿(以 A 相为例)

分段角差时,系统自动比较当前补偿后的基波瞬时电流有效值(详见"有效值校正")与预设的角差分段电流门限 值[角差分段电流门限值寄存器(R/W)],并根据比较结果自动选择对应的分段角差寄存器(R/W)的值进行角差校正。 关闭分段角差功能时,系统自动按照分段角差校正值寄存器 0(如寄存器 WAEC0)的值对各相进行角差校正。用户可通 过角差/比差分段信息寄存器(0xC004, PECAEC)判断当前系统的角差分段状态信息。

分段设计采用回差机制,即,角差分段电流门限值不是一个精确的数值,而是处于一个范围内,其范围大小(即,回差幅度)由计量控制寄存器 0 (0xC000, MTPARA0)中的 bit[12:8] (MSKA)决定, MSKA 的值即决定了写入角 差分段电流门限值寄存器的值的最后"MSKA"位数作为回差。例如,如果 MSKA 的值为 0x08,那么角差分段电流门 限寄存器的最后 8 个 bit 就是回差,即,当角差分段电流门限值为 0xabcd 时,门限上回差点 THH 为 0xac00,下回差 点 THL 为 0xab00,即,实际的角差分段电流门限值在 0xabc0~0xabd0 范围内。

RG	A ┥	lt THL	тн	ТНН	RGB
					gt 🕨

10.5 数字信号输入

过采样 Σ/ Δ ADC 输出 1bit 码流伴有大量的高频噪声,通常用 CIC 滤波器[抽取滤波器 (Decimation Filter)]来 抑制该噪声,并将系统时钟的采样频率由 FCLK 降低到 FCLK/N (N 是抽取滤波器的抽取率),而数据长度由 1-bit 扩 展为位宽为 (1+log₂N)的数据流。在 V9203 中, N=128,所以,降采样后,最终获得每个周波 (50Hz) 256 个 22bit 数据流,即信号的原始波形。

通过配置计量控制寄存器 0(0xC000, MTPARA0)中的 bit[6:0],用户可以决定是否将 ADC 输出的数字信号输入抽取滤波器中进行降采样处理。开启该功能时,ADC 的输出信号被累加进入抽取滤波器;关闭该功能时,ADC 输出 0,抽取滤波器输出为常数。

	表 1	.0-7	各通道数字信号输入使能
--	-----	------	-------------

寄存器	位		说明		
计量控制寄存器 0	Bit6	ADCIC	使能 IC 通道数字信号输入。1:使能;0:输入0		
(0xC000, MTPARA0)	Bit5	ADCIB	使能 IB 通道数字信号输入。1: 使能; 0: 输入 0		

Bit4	ADCIA	使能 IA 通道数字信号输入。1:使能;0:输入 0
Bit3	ADCIN	使能 IN 通道数字信号输入。1:使能;0:输入0
Bit2	ADCUC	使能 UC 通道数字信号输入。1:使能;0:输入 0
Bit1	ADCUB	使能 UB 通道数字信号输入。1:使能;0:输入 0
Bit0	ADCUA	使能 UA 通道数字信号输入。1:使能;0:输入0

经抽取滤波器处理后得到的电压/电流信号的值分别根据如下公式计算得到:

$$Ua = PGAdua \times PGAua \times \frac{Aua}{1.185} \times \sin\omega t = DUa \times \sin\omega t$$
$$Ia = PGAdia \times PGAia \times \frac{Aia}{1.185} \times \sin(\omega t + \psi) = DIa \times \sin(\omega t + \psi)$$

公式 10-2

其中,

PGAdua 或 PGAdia 为各通道的数字增益;

PGAua 或 PGAia 为各通道的模拟增益;

Aua 或 Aia 为各通道信号的输入信号的幅度(V);

1.185 为基准电压。

用户可通过计量控制寄存器 1(0xC001, MTPARA1) 配置各通道信号的数字增益, 将信号放大, 最大可配置为 128 倍(2^7)。如果电压信号较小, 经过模拟增益后, 仍比 ADC 满量程小很多, 建议将数字增益配置为 8 倍或 16 倍, 以提高性能。

表 1	0-8	各路信号的数字增益配置
-----	-----	-------------

寄存器	位		说明	
	Bit[26:24]	ATXIN	IN 通道数字增益控制。1~128 倍(2 ^{ATXIN})	
	Bit[22:20] ATXIC		IC 通道数字增益控制。1~128 倍(2 ^{ATXIC})	
	Bit[18:16] ATXUC		UC 通道数字增益控制。1~128 倍(2 ^{ATXUC})	
计量控制寄存器 1 (0xC001, MTPARA1)	Bit[14:12] ATXIB		IB 通道数字增益控制。1~128 倍(2 ^{ATXIB})	
	Bit[10:8]	ATXUB	UB 通道数字增益控制。1~128 倍(2 ^{ATXUB})	
	Bit[6:4]	ATXIA	IA 通道数字增益控制。1~128 倍(2 ^{ATXIA})	
	Bit[2:0]	ATXUA	UA 通道数字增益控制。1~128 倍(2 ^{ATXUA})	

10.6 信号原始波形输出

V9203 支持 DMA(Direct Memory Access)模式的数据传输方式,并通过 SPI 接口的硬件形式(即 DAM_SPI 传输接口)实现向外围器件发送 7 路电压/电流信号的原始波形。当计量控制寄存器 2(0xC002, MTPARA2)中的 bit[22:16]中的某位置 1 时,引脚 DSCK(Pin35)/DSCS(Pin36)/DSDO(Pin37)可用于向外围器件发送相应通 道 的 电压/电流信号 的原始 波形 (参见"数字信号输入"); 当 bit[22:16]都置 1 时,上述引脚将按 UA/IA/UB/IB/UC/IC/IN 的顺序循环发送相应通道信号的原始波形。

注意: V9203 的 DMA 模式固定为 SPI 主机模式 1 (时钟相位为 1,时钟极性为 0)。

寄存器	位		说明		
	Bit27 DSPICK		DMA 模式发送数据的奇偶校验		
	Bit26 DSPIMD		DMA 模式发送数据帧格式选择		
		DSPIEN	使能通过 DMA_SPI 传输接口发送各通道信号原始波形		
			1: 使能; 0: 禁止		
			Bit22:发送零线电流信号(IN)原始波形;		
计 重 控 制 奇 存 器 2 (0xC002, MTPARA2)			Bit21:发送C相电流信号(IC)原始波形;		
	Bit[22:16]		Bit20:发送C相电压信号(UC)原始波形;		
			Bit19:发送 B 相电流信号(IB)原始波形;		
			Bit18:发送 B 相电压信号(UB)原始波形;		
			Bit17:发送A相电流信号(IA)原始波形;		
			Bit16:发送A相电压信号(UA)原始波形		

表 10-9 信号原始波形发送相关寄存器

当系统时钟频率为 6.5536MHz 时,存储器中各通道信号的原始波形的更新频率为 6.4kHz。为了保证 7 个通道的 信号原始波形能及时传送出去,DMA_SPI 接口传送一帧数据的频率至少应为 51.2kHz。若每帧数据是 32-bit 的串行 数据帧,那么串行数据帧的发送波特率至少为 1638.4 kbps。为了能及时并可靠地传送数据,应设定串行数据帧的发 送波特率为 3.2768Mbps。

V9203 可通过两种方式通过 DMA_SPI 接口向外围器件传输信号的原始波形:

1. 传输方式 0: 一次完成 32-bit 数据的传送。每次传输的数据帧格式如表 10-10 所示。

当引脚 DSCS(Pin36)输出低电平时,数据进入发送阶段。发送阶段产生 32 个 DSCK 同步信号,在 DSCK 的上 升沿发送数据。发送 32-bit 数据后,引脚 DSCS 输出高电平,数据发送完成。外围器件的 SPI 接口需接收 32-bit 的串 行数据帧,且在 DSCS 低电平有效期间,在 DSCK 的下降沿采样数据。

表 10-10 DMA 模式发送数据帧(传输方式 0)

bit	内容
Bit[31:30]	22-bit 各通道 ADC 信号原始波形的第 22 位数据

bit	内容
Bit[29:8]	22-bit 各通道 ADC 信号原始波形
Bit7	0
	3-bit ADC 地址
	000: A 相电压信号(UA) 原始波形;
	001: A 相电流信号(IA)原始波形;
Bit[6:4]	010: B相电压信号(UB)原始波形;
	011: B 相电流信号(IB) 原始波形;
	100: C相电压信号 (UC) 原始波形;
	101: C相电流信号(IC)原始波形;
	110: 零线电流信号 (IN) 原始波形
Bit[3:1]	000
Bit0	奇偶校验位 (P)。用户可通过配置计量控制寄存器 2 (0xC002, MTPARA2) 的 bit27 (DSPICK) 选
	择数据发送的校验方式(奇校验或偶校验)。

 6输方式 1: 分两次完成 22-bit 的各通道 ADC 的电压/电流信号的原始波形的发送。每次传输的数据帧格式如表 10-11 所示。

当引脚 DSCS(Pin36)输出低电平时,数据进入发送阶段。发送阶段产生 16 个 DSCK 同步信号,在 DSCK 的上 升沿发送数据。发送 16-bit 数据后,引脚 DSCS 输出高电平,高字节数据发送完成。1 个 DSCK 周期后,引脚 DSCS 重新输出低电平,进入低字节数据发送阶段。发送阶段产生 16 个 DSCK 同步信号,在 DSCK 的上升沿发送数据,发送 完 16-bit 数据后,拉高引脚 DSCS 电平输出,高字节数据发送完成。外围器件的 SPI 接口需接收 16-bit 的串行数据 帧,且在 DSCS 低电平有效期间,在 SDCK 的下降沿采样数据。

表 10-11 DMA 模式发送数据帧(传输方式 1)

	bit	内容					
	Bit15	1: 表示第一次传输的是各通道 ADC 信号原始波形的高位字节					
	Bit[14:4]	各通道 ADC 信号原始波形的高 11 位(bit[21:11])数据					
han st.		3-bit ADC 地址					
第一次传输	Bit[3:1]	000: A 相电压信号(UA) 原始波形;					
		001: A 相电流信号(IA)原始波形;					
		010: B相电压信号(UB)原始波形;					
		011: B 相电流信号(IB)原始波形;					

	bit	内容				
		100: C相电压信号 (UC) 原始波形;				
		101: C相电流信号(IC)原始波形;				
		110: 零线电流信号(IN)原始波形				
	Bit0	奇偶校验位(P)。用户可通过配置计量控制寄存器 2(0xC002, MTPARA2)的 bit27(DSPICK) 选择数据发送的校验方式(奇校验或偶校验)。				
	Bit15	0:表示第二次传输的是各通道 ADC 信号原始波形的低位字节				
	Bit[14:4]	各通道 ADC 信号原始波形的低 11 位 (bit[10:0]) 数据				
	Bit[3:1]	3-bit ADC 地址				
		000: A 相电压信号(UA) 原始波形;				
		001: A 相电流信号(IA)原始波形;				
第二次		010: B 相电压信号(UB) 原始波形;				
传输		011: B相电流信号(IB)原始波形;				
		100: C 相电压信号(UC) 原始波形;				
		101: C相电流信号(IC)原始波形;				
		110: 零线电流信号(IN)原始波形				
	Bit0	奇偶校验位(P)。用户可通过配置计量控制寄存器 2(0xC002, MTPARA2)的 bit27(DSPICK) 选择数据发送的校验方式(奇校验或偶校验)。				

用户可通过配置计量控制寄存器 2(0xC002, MTPARA2)的 bit[23:16]选择向外发送任意通道 ADC 信号原始波形,通过配置 bit26(DSPIMD)选择数据传输方式,并通过配置 bit27(DSPICK)选择数据发送的校验方式(奇校验 或偶校验)。

图 10-9 DMA 传输方式

10.7 直流分量

V9203 中包含一个去直流电路。

默认情况下,经抽取滤波器处理后输出的原始信号被输入去直流电路中去除直流,从而将信号中的交流分量与直流 分量进行分离。其中,各通道信号的直流分量数据存于直流分量寄存器(R/W)中;而交流分量则参与后续功率/有效值 计算,使电能计量结果更为准确。

如果已知原始信号中的直流分量,用户可在 预设直流偏置值寄存器(**R/W**)中预设各通道信号中的直流分量,系统 自动进行去直流运算。

直流分量寄存器和预设直流偏置寄存器的数据格式均为 32-bit 补码,但,有效位仅为 bit[23:0],其中,bit23 为 符号位。当外部 MCU 通过 32 位总线访问这些寄存器时,总线的 bit[23:0]保存寄存器的 24-bit 数据,而总线的 bit[31:24]均等于寄存器 bit23 的值,即,所读取的 24-bit 数据的符号位。

当电能计量时钟频率为 6.5536MHz 时,直流分量寄存器的数据更新时间为 20ms,稳定时间为 100ms;当电能 计量时钟频率为 1.6384MHz 时,直流分量寄存器的数据更新时间为 80ms,稳定时间为 400ms;当电能计量时钟频 率为 819.2kHz 时,直流分量寄存器的数据更新时间为 160ms,稳定时间为 800ms。 注意:

在直流电应用时,用户可通过将计量控制寄存器 2(0xC002,MTPARA2)中的 bit11(DCBYPASS),使能直流电通过,使各通道的原始信号无需再通过高通滤波器,信号中的直流分量可直接参与后续的有效值计算和电能计量。

10.8 数字积分器

如果系统采用罗氏线圈作为采样电路,从去直流电路中输出的信号需要经过数字积分器处理,移相 90 度,并引入 一个系统增益 A (A 的大小与信号频率有关),再参与后续的运算。

当信号频率为 50Hz 时,电流有效值计算时的增益(A0)应为 0.636043109985836;有功/无功功率计算时的增益(A1)应为 0.635598782982145。

当采用罗氏线圈等 di/dt 传感器进行电流采样时,用户可通过配置计量控制寄存器 2(0xC002, MTPARA2)中的 bit12(DIDTEN)使能数字积分器。

表 10-12 数字积分器使能

寄存器	位		功能说明	
计量控制寄存器 2(0xC002, MTPARA2)	Bit12	DIDTEN	使能数字积分器,用于罗氏线圈采样应用 0:禁止; 1:使能	

10.9 有效值计算

在 V9203 中, 三相的电压和电流信号的交流分量信号(AC)分两路处理:

- 1 电压和电流信号的交流分量直接用于各通道信号的全波有效值计算(共7路信号);
- 2 电压和电流信号的交流分量经过带通滤波器(BPF,增益为 1/1.175435)处理后,输出基波信号,用于基波有效 值计算(共6路信号)。

图 10-10 全波/基波有效值计算

10.9.1 有效值计算

在 V9203 中,各通道信号的全波或基波有效值的数值与各通道信号的数字值相等,以A相电流为例:

 全波电流有效值: Iarms=DIa=PGAdia×PGAia×Aia 1.185
 公式 10-3
 基波电流有效值: BIarms=BDIa=PGAdia×PGAia×Aia 1.185×1.175435
 公式 10-4
 其中,
 PGAdia 为 A 相电流通道的数字增益;
 PGAia 为 A 相电流通道的模拟增益;

Aia为A相电流模拟输入信号的幅度(V);

1.185 为基准电压 (V)。

根据上述方法计算得到的是各通道信号的有效值,经过比差校正和二次补偿后,存于全波电压/电流有效值寄存器 (R/W)和基波电压/电流有效值寄存器(R/W)。上述寄存器为 32 位补码数据,恒为正值。

表 10-13 有效值计算相关寄存器

寄存器	地址范围	数据格式	说明
	0xE83E~0xE844		各相及零线全波瞬时电流/电压有效值
全波电压/电流有效值寄存器 (R/W)	0xE90E~0xE911	32-bit 补码, 恒为正数	各相及零线全波平均电流有效值
	0xE944~0xE946		各相全波平均电压有效值
	0xE880~0xE885		各相基波瞬时电流/电压有效值
基波电压/电流有效值寄存器 (R/W)	0xE8FD~0xE8FF	32-bit 补码, 恒为正数	各相基波平均电流有效值
	0xE90B~0xE90D		各相基波平均电压有效值

当电能计量时钟频率为 6.5536MHz 时,所有瞬时电压/电流有效值寄存器的更新时间为 20ms,全波瞬时电压/电流有效值寄存器的稳定时间为 150ms,基波瞬时电压/电流有效值寄存器的稳定时间为 200ms:所有平均电压/电流有效值寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为 1.6384MHz 时,所有瞬时电压/电流有效值寄存器的更新时间为 80ms,全波瞬时电压/电流有效值寄存器的稳定时间为 600ms,基波瞬时电压/电流有效值寄存器的稳定时间为 800ms;所有平均电压/电流有效值寄存器的更新时间为 2.56s,稳定时间为 4s。

当电能计量时钟频率为 819.2kHz 时,所有瞬时电压/电流有效值寄存器的更新时间为 160ms,全波瞬时电压/电流有效值寄存器的稳定时间为 1.2s,基波瞬时电压/电流有效值寄存器的稳定时间为 1.6s;所有平均电压/电流有效值寄存器的更新时间为 5.12s,稳定时间为 8s。

10.9.2 有效值校正

在 V9203 中,为了修正各个通道间的系统偏差,同时修正小信号下各个数据的线性度,根据计算得到的电压/电流 有效值均需要进行比差校正和二次补偿(offset 校正)后才会存入对应的数据寄存器中。

设原始的有效值为 RMS',校正补偿后的有效值为 RMS,比差校正值为 S,二次补偿值为 C,则,补偿后的值为:

$$RMS = RMS' \times (1 + S) + C$$

公式 10-5

用户可在全波电压/电流有效值补偿寄存器(R/W)和基波电压/电流有效值补偿寄存器(R/W)中设置全波/基波电压/电流有效值的比差校正值和二次补偿值。这些寄存器的数据均为 **32-bit** 补码。

表 10-14 有效值校正相关寄存器

寄存器	地址范围	数据格式	说明
全波电压/电流有效值补偿寄存器	0xE968~0xE96E	20 hit 礼珂	各相及零线全波电流/电压有效 值比差校正值
(R/W)	0xE994~0xE99A	32-bit 补码	各相及零线全波电流/电压有效 值二次补偿值(offset 校正值)
基波电压/电流有效值补偿寄存器	0xE976~0xE97B	22 hit 礼印	各相基波电流/电压有效值比差 校正值
(R/W)	0xE9A2~0xE9A7	ן שבישוג הוייש	各相基波电流/电压有效值二次 补偿值(offset 校正值)

10.10 功率计算

在 V9203 中, 三相的电压和电流信号的交流分量信号分两路处理:

- 1 电压和电流信号的交流分量直接用于有功功率计算;
- 2 电压和电流信号的交流分量经过希尔伯特滤波器(Hilbert Filter, HLB)移相 90 度后,得到的信号用于无功功率 计算。

图 10-11 有功/无功功率计算

10.10.1 全波有功/无功功率计算

各通道信号的全波波形可直接用于计算全波有功/无功功率计算。

全波有功/无功功率的计算公式如下	(以 A 相为例)	:
------------------	------------------	---

全波有功功率:	$PA = \frac{DUa \times DIa \times \cos \psi}{4}$	公式	10-6
全波无功功率 :	$QA = \frac{DUa \times DIa \times sin\psi}{4}$	公式	10-7

其中, DUa 和 DIa 为全波电压/电流信号的数字值。

上述数据经过功率校正和功率二次补偿后,并进一步平均/取绝对值后,得到各通道全波有功/无功功率的代数值、 平均值和绝对值,存于相应的全波有功/无功/视在功率寄存器(R/W)。上述寄存器为 32 位补码数据,其中,功率绝对 值寄存器恒为正数。

表	10-15	全波有功/无功功率计算相关寄存器

寄存器	地址范围	数据格式	说明
全波有功/无功/视在功率寄存器 (R/W)	0xE805~0xE807	32-bit 补码,恒为正	各相全波瞬时有功功率绝对值
	0xE808~0xE80A	数	各相全波瞬时无功功率绝对值
	0xE824~0xE826	32-bit 补码	各相全波瞬时有功功率代数值

0xE833~0xE835	各相全波瞬时无功功率代数值
0xE8E8~0xE8EA	各相全波平均有功功率
0xE8F0~0xE8F2	各相全波平均无功功率

当电能计量时钟频率为 6.5536MHz 时,所有全波瞬时功率的代数值和绝对值寄存器的更新时间为 80ms,稳定时间为 400ms;所有全波平均功率寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为 1.6384MHz 时,所有全波瞬时功率的代数值和绝对值寄存器的更新时间为 320ms,稳定时间为 1.6s;所有全波平均功率寄存器的更新时间为 2.56s,稳定时间为 4s。

当电能计量时钟频率为 819.2kHz 时,所有全波瞬时功率的代数值和绝对值寄存器的更新时间为 640ms,稳定时间为 3.2s;所有基波平均功率寄存器的更新时间为 5.12s,稳定时间为 8s。

各通道全波有功/无功功率的代数值与绝对值参与"合相功率计算";各功率的绝对值参与"能量累加和脉冲发生"。

10.10.2 基波有功/无功功率计算

各通道信号的全波波形经过带通滤波器(BPF,增益为1/1.175435)处理后,输出基波信号,用于基波有功/无功功率计算。

基波有功/无功功率的计算公式如下(以A相的信号为例):

BDUa =
$$\frac{DUa}{1.175435}$$

BDIa = $\frac{DIa}{1.175435}$
公式 10-8

其中, BDUa 和 BDIa 为基波电压/电流信号的值; DUa 和 DIa 为全波电压/电流信号的数字值。

所以, 基波有功/无功功率计算公式如下:

基波有功功率: $BPA = \frac{BDUa \times BDIa \times \cos\psi}{4} = \frac{PA}{1.38165}$ 公式 10-9 基波无功功率: $BQA = \frac{BDUa \times BDIa \times \sin\psi}{4} = \frac{QA}{1.38165}$ 公式 10-10

上述数据经过功率比差校正和功率二次补偿后,并进一步平均/取绝对值后,得到各通道基波有功/无功功率的代数 值、平均值和绝对值,存于相应的基波有功/无功/视在功率寄存器(R/W)。上述寄存器为 32 位补码数据,其中,功率 绝对值寄存器恒为正数。

表 1	0-16	基波有功/无功功率计算相关:	寄存器
-----	------	----------------	-----

寄存器	地址范围	数据格式	说明
基波有功/无功/视在功率寄存器	0xE80B~0xE80D	32-bit 补码,恒为正	各相基波瞬时有功功率绝对值
(R/W)	0xE80E~0xE810	数	各相基波瞬时无功功率绝对值

寄存器	地址范围	数据格式	说明
	0xE866~0xE868		各相基波瞬时有功功率代数值
	0xE877~0xE879	27 hit 社团	各相基波瞬时无功功率代数值
	0xE900~0xE902	各相基波平均有功功率	
0xE905~0xE907			各相基波平均无功功率

当电能计量时钟频率为 6.5536MHz 时,所有基波瞬时功率的代数值和绝对值寄存器的更新时间为 80ms,稳定时间为 450ms;所有基波平均功率寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为 1.6384MHz 时,所有基波瞬时功率的代数值和绝对值寄存器的更新时间为 320ms,稳定时间为 1.8s;所有基波平均功率寄存器的更新时间为 2.56s,稳定时间为 4s。

当电能计量时钟频率为 819.2kHz 时,所有基波瞬时功率的代数值和绝对值寄存器的更新时间为 640ms,稳定时间为 3.6s;所有基波平均功率寄存器的更新时间为 5.12s,稳定时间为 8s。

各通道基波有功/无功功率的代数值与绝对值参与"合相功率计算";各功率的绝对值参与"能量累加和脉冲发生" 运算。

10.10.3 功率校正

在 V9203 中,为了修正各个通道间的系统偏差,同时修正小信号下各个数据的线性度,根据计算得到的功率值均 需要进行比差校正和二次补偿后才会存入对应的数据寄存器中。

设原始的功率值为 P',校正补偿后的功率值为 P,比差校正值为 S,二次补偿值为 C,则,补偿后的值为:

 $P = P' \times (1 + S) + C$

公式 10-11

用户可在全波有功/无功功率校正寄存器(R/W)和基波有功/无功功率校正寄存器(R/W)中设置全波/基波有功/ 无功功率的比差校正值和二次补偿值。这些寄存器的数据均为 **32-bit** 补码。

10.10.3.1 功率比差校正

在 V9203 中,用户可在全波有功/无功功率校正寄存器(R/W)和基波有功/无功功率校正寄存器(R/W)中设置 基波有功/无功功率和全波无功功率的比差校正值,直接对上述功率值进行比差校正。

表 10-17 功率比差校正相关寄存器

寄存器	位		功能说明
计量控制寄存器 0			全波有功功率比差分段基波电流门限值回差控制
(0xC000, MTPARA0),	Bit[20:16]	MSKP	该寄存器的值决定全波有功功率比差分段基波电流门限值的
R/W			回差值。

寄存器	位		功能说明	
			比如:如果 MSKP 的值为 8,上述电流门限值为 0xabcd,则 该电流门限值的后 8 个比特表示回差范围,即上门限值; 0xabff,下门限值为 0xab00。	
计量控制寄存器 2 (0xC002, MTPARA2), R/W	Bit25	PECEN	全波有功功率比差分段使能。默认为 0 1:禁止; 0:使能	
	Bit[21:20]	it[21:20] PECC C 相有功功率比差分段信息 00: 分段 0; 01: 分段 1; 10: 分段 2		
角差/比差分段信息寄存器 (0xC004, PECAEC), R	Bit[17:16]	PECB	B相有功功率比差分段信息 00:分段 0; 01:分段 1; 10:分段 2	
	Bit[13:12]	PECA	A 相有功功率比差分段信息 00:分段 0; 01:分段 1; 10:分段 2	
全波有功/无功功率校正寄 存器(R/W)	32-bit		地址范围: 0xE959~0xE967 设置各相全波有功/无功功率比差校正值	
全波有功功率比差分段电 流门限值寄存器(R/W)	32-bit		地址范围: 0xE988~0xE98D 设置各相全波有功功率比差分段电流门限值	
基波有功/无功功率校正寄 存器(R/W)	32-bit		地址范围: 0xE970~0xE975 设置各相基波有功/无功功率比差校正值	

为了实现较大的动态范围,V9203 设计中采用了分段比差校正的设计,对三相全波有功功率进行比差校正,共设 计了 3 个工作区段,如图 10-12 所示。用户可通过计量控制寄存器 2 (0xC002, MTPARA2)中的 bit25 使能或关闭 全波有功功率分段比差校正功能。默认情况下,分段比差校正功能使能。

图 10-12 分段比差补偿(以 A 相为例)

分段比差校正时,系统自动比较当前补偿后的基波瞬时电流有效值[详见基波电压/电流有效值寄存器(R/W)]与预 设的全波有功功率比差分段电流门限值寄存器(R/W)的值,并根据比较结果自动选择对应的全波有功/无功功率校正寄 存器(R/W)的值进行全波有功功率的比差校正。用户可通过角差/比差分段信息寄存器(0xC004, PECAEC)判断当 前系统的有功功率比差分段状态信息。

关闭分段比差校正功能时,系统自动按照各相全波有功功率比差分段 0 寄存器(如寄存器 WAPTAK0)的值对各相的全波有功功率进行比差校正。

分段设计采用回差机制,即,全波有功功率比差分段补偿电流门限值不是一个精确的数值,而是处于一个范围内, 其范围大小(即,回差幅度)由计量控制寄存器 0(0xC000, MTPARA0)中的 bit[20:16](MSKP)决定, MSKP 的 值即决定了写入全波有功功率比差分段补偿电流门限值寄存器的值的最后"MSKP"位数作为回差。例如,如果 MSKP 的值为 0x08,那么全波有功功率比差分段补偿电流门限寄存器的最后 8 个 bit 就是回差,即,当分段电流门限值为 0xabcd时,门限上回差点THH为0xabff,下回差点THL为0xab00,即,实际的分段电流门限值在0xab00~0xabff 范围内。

图 10-13 全波有功功率分段比差补偿回差机制

10.10.3.2 功率二次补偿

为了使最后的电能计量结果更为精确, V9203 引入了功率二次补偿(offset 校正)设计,以消除功率计算过程中因串扰而引起的功率值失调。

用户可在全波有功/无功功率校正寄存器(R/W)和基波有功/无功功率校正寄存器(R/W)中设置全波/基波有功/ 无功功率的二次补偿值。这些寄存器的数据均为 32-bit 补码。

表 10-18 功率二次补偿相关寄

寄存器	地址范围	数据格式	功能说明
全波有功/无功功率校正寄存器(R/W)	0xE98E~0xE993	32-bit	设置各相全波有功/无功功率二次补 偿值

公式 10-12

公式 10-13

寄存器	地址范围	数据格式	功能说明
基波有功/无功功率校正寄存器(R/W)	0xE99C~0xE9A1	32-bit	设置各相基波有功/无功功率二次补 偿值

10.11 视在功率计算

V9203 支持两种方式计算视在功率:

1 根据全波/基波瞬时电压/电流有效值计算:

$$S = \frac{Irms \times Urms}{4}$$

其中, S 为全波/基波视在功率(单位: VA);

Irms 为经过二次补偿后的全波/基波电流有效值;

Urms 为经过二次补偿后的全波/基波电压有效值。

2 根据有功/无功功率计算:

$$S = \sqrt{P^2 + Q^2}$$

其中, P 为经过二次补偿后的全波/基波有功功率(单位: W);

Q为经过二次补偿后的全波/基波无功功率(单位: Var);

S为全波/基波视在功率(单位: VA)。

图 10-14 视在功率计算

如图 10-14 所示,用户可通过配置计量控制寄存器 2 (0xC002, MTPARA2)中的 bit13 (APPMODE)选择不同的方式计算视在功率。默认情况下,系统根据瞬时电压/电流有效值计算视在功率。

计算得到的视在功率,进一步平均后,得到各通道视在功率的平均值,存于相应的全波有功/无功/视在功率寄存器(R/W)和基波有功/无功/视在功率寄存器(R/W)中。上述寄存器为 32 位补码数据,恒为正数。

表 10-19 视在功率计算相关寄存器

寄存器	位		功能说明
计量控制寄存器 2(0xC002, MTPARA2)	Bit13	APPMODE	视在功率计算模式选择,默认值为0。 0:根据有效值计算; 1:根据有功功率和无功功率计算
全波有功/无功/视在功率寄存器(R/W)			地址范围: 0xE81F~0xE821 各相全波视在功率瞬时值, 32-bit 补码, 恒为正数 地址范围: 0xE8EB~0xE8ED 各相全波视在功率平均值, 32-bit 补码, 恒为正数
基波有功/无功/视在功率寄存器(R/W)			地址范围: 0xE854~0xE856 各相基波视在功率瞬时值, 32-bit 补码, 恒为正数 地址范围: 0xE8F6~0xE8F8 各相基波视在功率平均值, 32-bit 补码, 恒为正数

当电能计量时钟频率为 6.5536MHz 时,全波/基波瞬时视在功率寄存器的更新时间为 80ms,全波瞬时视在功率 寄存器的稳定时间为 400ms,基波瞬时视在功率寄存器的稳定时间为 450ms;所有平均视在功率寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为1.6384MHz 时, 全波/基波瞬时视在功率寄存器的更新时间为320ms, 全波瞬时视在功率 寄存器的稳定时间为1.6s, 基波瞬时视在功率寄存器的稳定时间为1.8s; 所有平均视在功率寄存器的更新时间为 2.56s, 稳定时间为4s。

当电能计量时钟频率为819.2kHz时,全波/基波瞬时视在功率寄存器的更新时间为640ms,全波瞬时视在功率寄存器的稳定时间为 3.2s,基波瞬时视在功率寄存器的稳定时间为 3.6s;所有平均视在功率寄存器的更新时间为 5.12s,稳定时间为 8s。

各通道全波/基波视在功率的代数值参与"合相功率计算"和"能量累加和脉冲发生"运算。

10.12 功率因数计算

在 V9203 中, 功率因数计算公式如下:

 $\cos\theta = \frac{|\mathsf{P}|}{\mathsf{S}}$

其中, cosθ 为功率因数寄存器的值, 32-bit 无符号数据;

|P|为全波/基波瞬时有功功率绝对值寄存器的值;

S为全波/基波瞬时视在功率寄存器的值。

通过上述公式计算得到各相的瞬时功率因数值,存于各相全波/基波瞬时功率因数寄存器中,经过平均后,得到各相的平均功率因数值,存于各相全波/基波平均功率因数寄存器。所有功率因数寄存器均为 **32-bit** 无符号数据。

表 10-20 功率因数计算相关寄存器

寄存器	地址范围	数据格式	说明
	0xE811~0xE813		各相全波瞬时功率因数
	0xE8E4~0xE8E6	 37bit 于符号粉墀	各相全波平均功率因数
王波切半囚致苛付岙(K/W)	0xE814		全波合相瞬时功率因数
	0xE8E7		全波合相平均功率因数
	0xE857~0xE859		各相基波瞬时功率因数
其独功変田粉突方器 (D/W)	0xE8F9~0xE8FB 22 bit 天符号数据		各相基波平均功率因数
	0xE85A	SZ-DIC 几何 与 数 缩	基波合相瞬时功率因数
	0xE8FC		基波合相平均功率因数

当电能计量时钟频率为 6.5536MHz 时,所有瞬时功率因数寄存器的更新时间为 80ms,全波瞬时功率因数寄存器 的稳定时间为 400ms,基波瞬时功率因数寄存器的稳定时间为 450ms;所有平均功率因数寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为 1.6384MHz 时,所有瞬时功率因数寄存器的更新时间为 320ms,全波瞬时功率因数寄存器的稳定时间为 1.6s,基波瞬时功率因数寄存器的稳定时间为 1.8s;所有平均功率因数寄存器的更新时间为 2.56ms,稳定时间为 4s。

当电能计量时钟频率为 819.2kHz 时,所有瞬时功率因数寄存器的更新时间为 640ms,全波瞬时功率因数寄存器 的稳定时间为 3.2s,基波瞬时功率因数寄存器的稳定时间为 3.6s;所有平均功率因数寄存器的更新时间为 5.12s,稳 定时间为 8s。

实际的功率因数值为上述寄存器的值除以 2^31,得到一个 2~0 的数。当此数大于 1 时,功率因数为 1。

功率因数大于1有两种可能性:

- 1. 视在功率为0,在此处表现为一个约等于2的数据;
- 由于计算误差,导致纯有功计算时,有功功率略大于视在功率(根据有效值计算视在功率时,此现象尤为明显),此
 时,计算得到的功率因数将是一个略大于1的数值,可将其作功率因数为1来处理。

10.13 合相功率计算

V9203 支持合相有功/无功/视在功率计算。其中,有功/无功合相功率有两种组合形式,视在功率则仅有一种。如 图 10-15 所示。

10.13.1 合相有功/无功功率计算

全波/基波合相有功/无功功率是各相功率的代数值、绝对值或0值的三选一之和,用户可根据全波/基波合相有功功率0组合寄存器(0xEC23,ZZPA0)、全波/基波合相有功功率1组合寄存器(0xEC24,ZZPA1)、全波/基波合相无功功率0组合寄存器(0xEC47,ZZQA0)和全波/基波合相无功功率1组合寄存器(0xEC48,ZZQA1)进行选择。

比如: 全波合相有功功率可以是 A 相全波有功功率的绝对值、B 相全波有功功率的代数值和 C 相的 O 值之和。

计算得到的全波/基波合相有功/无功功率代数值存于合相有功/无功功率 0/1 代数值寄存器中,经过平均和取绝对 值后,得到的值分别存于合相全波/基波平均有功/无功功率 0/1 寄存器和合相全波/基波有功/无功功率绝对值寄存器中。 上述所有寄存器均为 32-bit 补码,其中绝对值寄存器恒为正数,该值参与后续的全波/基波合相有功/能量累加运算。

表 10-21 合相有功/无功功率计算相关寄存器

寄存器	说明
全波/基波合相有功功率 0 组合寄存器 (0xEC23, ZZPA0)	推荐配置为 0×15
全波/基波合相有功功率 1 组合寄存器 (0xEC24, ZZPA1)	推荐配置为 0x2A
全波/基波合相无功功率 0 组合寄存器 (0xEC47, ZZQA0)	推荐配置为 0×15
全波/基波合相无功功率 1 组合寄存器 (0xEC48, ZZQA1)	推荐配置为 0x2A
	地址范围 0xE801~0xE804, 全波合相瞬时有功/无功功率绝对值, 32- bit 补码, 恒为正数
全波有功/无功/视在功率寄存器(R/W)	地址范围 0xE822~0xE823,全波合相瞬时有功功率代数值,32-bit 补码
	地址范围 0xE831~0xE832,全波合相瞬时无功功率代数值,32-bit 补码
	地址范围 0xE8EE~0xE8EF,全波合相有功功率平均值,32-bit 补码
	地址范围 0xE8F3~0xE8F4,全波合相无功功率平均值,32-bit 补码

寄存器	说明
	地址范围 0xE850~0xE853,基波合相瞬时有功/无功功率绝对值,32- bit 补码,恒为正数
	地址范围 0xE864~0xE865,基波合相瞬时有功功率代数值,32-bit 补码
基波有功/尤功/视在功率寄存器(R/W)	地址范围 0xE875~0xE876,基波合相瞬时无功功率代数值,32-bit 补码
	地址范围 0xE903~0xE904,基波合相有功功率平均值,32-bit 补码
	地址范围 0xE908~0xE909,基波合相无功功率平均值,32-bit 补码

当电能计量时钟频率为 6.5536MHz 时,所有合相有功/无功功率代数值和绝对值寄存器的更新时间为 80ms,全 波合相有功/无功功率代数值和绝对值寄存器的稳定时间为 400ms,基波合相有功/无功功率代数值和绝对值寄存器的 稳定时间为 450ms;所有全波/基波合相平均有功/无功功率寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为 1.6384MHz 时,所有合相有功/无功功率代数值和绝对值寄存器的更新时间为 320ms,全 波合相有功/无功功率代数值和绝对值寄存器的稳定时间为 1.6s,基波合相有功/无功功率代数值和绝对值寄存器的稳定 时间为 1.8s;所有全波/基波合相平均有功/无功功率寄存器的更新时间为 2.56s,稳定时间为 4s。

当电能计量时钟频率为819.2kHz时,所有合相有功/无功功率代数值和绝对值寄存器的更新时间为640ms,全波合相有功/无功功率代数值和绝对值寄存器的稳定时间为3.2s,基波合相有功/无功功率代数值和绝对值寄存器的稳定时间为3.6s;所有全波/基波合相平均有功/无功功率寄存器的更新时间为5.12s,稳定时间为8s。

图 10-15 合相功率计算

10.13.2 合相视在功率计算

全波/基波合相视在功率是各相视在功率或 0 值的二选一之和,每相独立选择。用户可根据全波/基波合相视在功率 组合寄存器 (0xEC05, ZZAPPA)进行选择。

比如: 全波合相视在功率可以是 A 相全波视在功率、B 相全波视在功率和 C 相的 O 值之和。

计算得到的全波/基波合相视在功率瞬时值存于合相视在功率瞬时值寄存器中,经过平均后,得到的值存于全波/基 波合相平均视在功率寄存器中。上述所有寄存器均为 32-bit 补码,恒为正数,其中合相视在功率瞬时值用于后续全波/ 基波合相视在能量的累加运算。

表 10-22 合相视在功率计算相关寄存器

寄存器	说明
全波/基波合相视在功率组合寄存器 (0xEC05,ZZAPPA)	推荐配置为 0×07
全波有功/无功/视在功率寄存器(R/W)	0xE84E, 全波合相视在功率瞬时值, 32-bit 补码, 恒为正数
	0xE8F5,全波合相视在功率平均值,32-bit补码,恒为正数
	0xE88C,基波合相视在功率瞬时值,32-bit补码,恒为正数
×ωη切/ 九切/ 吮仁切平可什奋(K/ W)	0xE90A,基波合相视在功率平均值,32-bit补码,恒为正数

当电能计量时钟频率为 6.5536MHz 时,所有合相视在功率瞬时值寄存器的更新时间为 80ms,全波合相视在功率瞬时值的稳定时间为 400ms,基波合相视在功率瞬时值的稳定时间为 450ms;所有全波/基波合相平均视在功率寄存器的更新时间为 640ms,稳定时间为 1s。

当电能计量时钟频率为 1.6384MHz 时,所有合相视在功率瞬时值寄存器的更新时间为 320ms,全波合相视在功率瞬时值的稳定时间为 1.6s,基波合相视在功率瞬时值的稳定时间为 1.8s;所有全波/基波合相平均视在功率寄存器的更新时间为 2.56s,稳定时间为 4s。

当电能计量时钟频率为 819.2kHz 时,所有合相视在功率瞬时值寄存器的更新时间为 640ms,全波合相视在功率瞬时值的稳定时间为 3.2s,基波合相视在功率瞬时值的稳定时间为 3.6s;所有全波/基波合相平均视在功率寄存器的更新时间为 5.12s,稳定时间为 8s。

10.14 能量累加和脉冲发生

V9203 提供了普通的能量累加/脉冲计数电路和 4 路高速能量累加/脉冲计数电路(如图 10-16 所示,以 A 相/合 相全波有功/视在能量累加为例)。

10.14.1 普通能量累加和脉冲发生电路

用户可通过配置计量控制寄存器 2(0xC002, MTPARA2)中的 bit15(EGYEN),开启或关闭普通能量累加功能。

当普通能量累加使能时,每隔4个周波(80ms,即12.5Hz),各种功率绝对值数据累加进入全波有功/无功/视在能量累加寄存器(R/W)和基波有功/无功/视在能量累加寄存器(R/W),当能量累加寄存器的累加数据超过能量累加

门限值时[能量累加门限值寄存器(R/W)]时,产生一个能量脉冲,同时在对应的普通能量脉冲计数器中加 1,并从能 量累加寄存器的累积数据中减去一个能量累加门限值。普通能量累加不输出 CF 脉冲。

能量累加门限值的计算公式如下:

 $PGAT = P \times T \times 6.25$

公式 10-15

其中:

P: 输入额定电压和额定电流时的全波或基波合相有功功率寄存器的值;

T: 时间常数,计算公式 T = $\frac{3600 \times 1000}{PulseConstant \times U_n \times I_n \times PhaseNumbe}$ 公式 10-16

V9203 提供全波有功/无功/视在能量累加寄存器(R/W)、全波有功/无功/视在能量脉冲计数器(R/W)、基波有功/无功/视在能量累加寄存器(R/W)和基波有功/无功/视在能量脉冲计数器(R/W)。所有能量累加寄存器均为 64-bit 补码,所有能量脉冲计数器为 32-bit 补码,恒为正数。

为了输出高分辨率的 CF 脉冲, V9203 还提供了 4 路高速能量累加和脉冲发生电路(高速能量累加速度是普通能量 累加速度的 16384 倍)。用户通过配置计量控制寄存器 2(0xC002, MTPARA2)中的 bit[7:4](CFCALC),使能 高速能量累加功能。

在高速能量累加和脉冲发生电路中,高速电路的累加功率每 4 个周波(80ms)更新 1 次。用户可通过配置 CF 脉冲来源选择寄存器(0xEC34,ZZPCF0A)确定各种 CF 脉冲的来源,并将这些功率数据存于高速电路功率寄存器(R/W),这些功率数据累加进入高速电路能量累加寄存器(R/W),当能量累加寄存器累积数据超过能量累加门限值寄存器(R/W)时,产生一个能量脉冲,同时在对应的高速能量脉冲计数器中加 1,并从能量累加寄存器累积数据中减去一个能量门限值。当 CF 脉冲输出使能时,能量脉冲计数器每累加 2 次输出一个 CF 脉冲。

注意**:**

当系统时钟为 6.5536MHz 时,高速电路能量累加寄存器每秒钟累加 204800 次,是普通能量累加速度(每秒 12.5次)的 16384(2^14)倍。此时,高速能量门限应该是普通能量门限的 16384(2^14)倍,所以,在设定能量累加 门限值寄存器(R/W)时,应当将高 14 位写成 0。

通过配置 bit[3:0](CFON),开启或关闭 CF 脉冲输出,各种高速能量 CF 脉冲与输出引脚的对应关系如表 10-23 所示。当电能计量时钟频率为 6.5536MHz,ADC 时钟频率为 819.2kHz 时,高速电路能量累加寄存器每秒钟累加 204800 次,脉冲计数器每累加 2 次输出一个 CF 脉冲,CF 脉冲输出频率最大为 102.4kHz,正常输出的 CF 脉冲宽度 为 80ms。当 CF 脉冲周期小于 160ms 时,输出占空比为 50%的方波。

V9203 支持脉冲常数加倍。通过增大脉冲常数,使能量累加门限值减小,从而加快脉冲产生速度,用户可通过 bit[10:8](CFFAST,0xC002,MTPARA2)配置高速能量脉冲的产生速度。当输入小信号时,提高高速能量脉冲的产 生速度可以提高校表速度。

表 10-23 高速能量 CF 脉冲与输出引脚的对应关系

引脚编号	引脚名称	CF 脉冲
26	CF0	高速全波或基波合相有功能量 CF 脉冲

27	CF1	高速全波或基波合相无功能量 CF 脉冲
28	CF2	高速全波或基波合相视在能量 CF 脉冲
29	CF3	高速全波或基波合相视在功率或全波合相无功能量 CF 脉冲

表 10-24 高速能量累加和 CF 脉冲输出寄存器

寄存器	位		说明	
CF 脉冲来源选择寄存器(0xEC34, ZZPCF0A)	Bit[15:12]	CF3PS	CF3 脉冲来源选择,默认为 0b0000,即来源未定 为一定不为 0 的随机数值。	
	Bit[11:8]	CF2PS	CF2 脉冲来源选择,默认为 0b0000,即来源未定,为一定不为 0 的随机数值。	
	Bit[7:4]	CF1PS	CF1 脉冲来源选择,默认为 0b0000,即来源未定,为一定不为 0 的随机数值。	
	Bit[3:0]	CF0PS	CF0 脉冲来源选择,默认为 0b0000,即来源未定,为一定不为 0 的随机数值。	
	Bit[10:8]		能量脉冲产生速度加倍。默认为0。	
		CFFAST	000~011: 正常速度	
			100:4倍;	
			101: 16 倍;	
			110:64倍;	
			111: 128 倍	
	Bit[7:4]	CFCALC	全波/基波有功/无功/视在能量高速累加使能,默认为0。1:使能;0:禁止	
计量控制寄存器 2(0xC002, MTPARA2)			Bit7: 全波/基波合相视在能量或全波合相无功能量	
			DILO: 主波/基波合相有功能重高迷系加(CF2)	
			BIC5: 至波/基波合相无功能重局迷系加(CF1)	
			DIL4:	
	Bit[3:0]	CFON	筒迷能里 CF 脉冲 潮 田 使 能, 款 认 为 U。	
			L: 仅比;	

图 10-16 能量累加(以A相/合相全波有功/视在能量累加为例)

10.15 频率测量

V9203 支持信号频率测量。

在 V9203 中,以 102.4kHz 的采样频率对各通道电压信号的基波分量进行过零点检测,33 个正向过零点间的采 样个数即为待测信号的频率。

待测信号的频率计算公式如下:

$$f = \frac{3276800}{FRO}$$

公式 10-17

其中,f为待测信号的频率(Hz);FRQ为各相频率寄存器的值(十进制)。

频率寄存器(表 1-16)为 32-bit 补码,恒为正数。读数据时,低 17 位为有效的频率数据,高 15 位为 0。频率测量的分辨率为 0.0008Hz。

当电能计量时钟频率 6.5536MHz 时,频率寄存器的更新时间为 640ms,稳定时间与信号大小有差,信号越小,稳定越长,一般大于 1s。

当电能计量时钟频率 1.6384MHz 时,频率寄存器的更新时间为 2.56s,稳定时间与信号大小有差,信号越小,稳定越长,一般大于 4s。

当电能计量时钟频率 819.2kHz 时,频率寄存器的更新时间为 5.12s,稳定时间与信号大小有差,信号越小,稳定越长,一般大于 8s。

10.16 相位测量

V9203 支持相位测量。

在 V9203 中,以 102.4kHz 的采样频率对各通道电压信号的基波分量进行过零点检测,待测信号的第 N 个正向过零点与 A 相电压信号第(N-1)个正向过零点之间的采样个数即为待测信号的相位。

待测信号的相位计算公式如下:

$$PH = \frac{(PHS+1)*360*f}{102400}$$
 公式 10-18

其中,

PH 为待测信号与 A 相电压信号的相差(单位为度);

PHS 为待测信号的相位寄存器的值(十进制);

f 为电压频率(十进制),单位 HZ。

相位寄存器(表 1-16)为 32-bit 补码,恒为正数。读数据时,低 12 位为相位数据,高 20 位为 0。相位测量的分辨率为 0.175 度。

当电能计量时钟频率 6.5536MHz 时,频率寄存器的更新时间为 20ms,稳定时间与信号大小有差,信号越小,稳 定越长,一般大于 1s。

当电能计量时钟频率 1.6384MHz 时,频率寄存器的更新时间为 80ms,稳定时间与信号大小有差,信号越小,稳定越长,一般大于 4s。

当电能计量时钟频率 819.2kHz 时,频率寄存器的更新时间为 160ms,稳定时间与信号大小有差,信号越小,稳定越长,一般大于 8s。

10.17 零线不平衡判断

在三相中,零线电流有效值应等于 A/B/C 三相电流代数和的有效值,即

 $I_{N}(t) = I_{A}(t) + I_{B}(t) + I_{C}(t)$

如果两者不相等,则表明系统发生了窃电事件(零线不平衡)。

当 V9203 应用于三相四线制时,测量得到的零线电流信号存于寄存器 ARTIN (0xE841),用于判断系统是否发生了零线不平衡。

图 10-17 零线电流信号处理流程

不使用零线电流通道时,系统自动计算 A/B/C 三相电流代数和的有效值。为了防止溢出,将计算得到的有效值数据 除以 4 存于寄存器 MUM (0xE94B),用于判断系统是否发生了零线不平衡。

10.18 过零点判断

在 V9203 中, A/B/C 三相的基波电压信号(UA/UB/UC)的符号位可以直接在引脚 ZX0~ZX2(Pin34~Pin32) 上输出,其中 UA 对应 ZX0,UB 对应 ZX1,UC 对应 ZX2。输出高电平(1)时,相应通道的基波电压信号为负数;输 出低电平(0)时,相应通道的基波电压信号为正数。当上述三个引脚上的输出电平由 1 到 0 跳变时,相应通道的电压 信号正向过零点。

当 IRQ0 中断使能寄存器 (0xA000, IRQEN0) 和/或 IRQ1 中断使能寄存器 (0xA001, IRQEN1) 中的 bit[3:1] 中的某几个 bit 被置位时,如果相应通道的电压信号过零点,则系统产生正向过零点中断,中断标志寄存器 (0xA002, IRQFLAG) 中的相应中断标志位置位,引脚 IRQ0 和/或 IRQ1 (Pin30 和/或 Pin31) 上输出高电平,向外部 MCU 提起中断。用户通过将中断标志位清零以清除中断标志。

当相序异常中断被使能时,如果 A/B/C 三相不是以 A-B-C 的顺序正向过零点,则系统产生相序异常中断,中断标志位 PSE(bit14, IRQFLAG, 0xA002)置位,引脚 IRQ0 和/或 IRQ1 上输出高电平,向外部 MCU 提起中断。

10.19 全失压检测

V9203 集成了一个电流检测电路,可用于粗略判断电流通道是否有信号。此时,建议将电流通道 ADC 的模拟增益 配置为 32 倍,详见模拟控制寄存器 0 (0x8000, ANCtrl0)。

当引脚 PMO(Pin24)上输入高电平,引脚 PM1(Pin25)上输入低电平,而且,A/B/C 三相电流通道采用相同的 采样电路、相同的模拟增益和数字增益时,用户只要打开该检测电路,并使能 DMA_SPI 接口输出各电流通道信号的原 始波形,即可判断电流通道是否有信号。

电流检测电路对 DMA_SPI 接口输出的电流信号原始波形(采样频率为 6.4kHz)进行全波整流。如果电流波形连续 5 个采样点大于预设的电流检测门限值寄存器(0xEC1D,ZZDCUM,R/W)的值,则产生电流检测信号。当 IRQ0 中断使能寄存器(0xA000,IRQEN0)和/或 IRQ1 中断使能寄存器(0xA001,IRQEN1)中的 bit[13:11]中的某个 bit 被置位时,如果相应通道产生电流检测信号,则系统产生电流通道全失压检测中断,中断标志寄存器(0xA002,

IRQFLAG)中的相应中断标志位置位,引脚 IRQ0 和/或 IRQ1(Pin30 和/或 Pin31)上输出高电平,向外部 MCU 提起中断。当电流波形小于预设的电流检测门限值时,相应的中断标志位自动清除。

使用电流检测功能时,最关键的步骤是设定电流检测门限值,其设定过程如下:

1 将电流有效值的比差值和二次补偿值设置为0;

- 2 在任一相电流通道输入额定电流 In,读取此时的电流有效值 Irms,此时,Irms 是一个 32-bit 的整数[Irms 即为 额定电流 In 的峰值,或者说 In(t)=Irms×sin(ωt)];
- 3 如果预设电流门限是 0.1%In,则写入检测电流门限值寄存器的值:

 $TH = -\frac{Irms}{1000 \times 512}$

或将 TH = $-\frac{\text{Irms}}{1000}$ 的值右移 9 位。

10.20 芯片启动流程

芯片在上电后,系统会自动开启时钟分频电路和 ADC,系统时钟源自动切换为 6553.6kHz 的电能计量时钟。 建议采用下列流程启动芯片:

- 1. 向引脚 PMO 和 PM1 (Pin24~Pin25) 输入高电平,再向引脚 DEEPSLEEP (Pin19) 输入低电平(超过 4ms),唤 醒芯片并使芯片进入正常工作模式;
- 2. 向计量控制寄存器 0(0xC000, MTPARA0) 写入 0x10000000。
- 3. 向 0xC800~0xC837 和 0xC880~0xC8B7 范围内的数据存储器 RAM 写入 0,清空该地址范围的数据存储器 RAM 的内容;
- 向计量控制寄存器 0 (0xC000, MTPARA0) 写入 0xAA000000,等待 20ms,清空电能计量模块部分数据存储器 RAM(包括: 0xE000~0xE08F/0xE800~0xEAB7/0xF800~0xF87F/0xF000~0xF1EF);
- 5. 向计量控制寄存器 0(0xC000, MTPARA0) 写入 0x000000FF, 使能七路通道数字信号输入;
- 6. 根据实际应用配置计量控制寄存器 1 (0xC001, MTPARA1) 和计量控制寄存器 2 (0xC002, MTPARA2);
- 7. 设置模拟控制寄存器和校表参数寄存器;
- 8. 计算校验和,并进入计量控制寄存器 3 (0xC003, MTPARA3);
- 9. 等待 1s 后,向中断标志寄存器(0xA002, IRQFLAG)的 bit0 写 0,读取引脚 IRQ0(Pin30)的电平。如果是低电平,说明系统参数设置正确,系统工作正常,开启能量计量和 CF 输出,否则,重复芯片开启流程。

10.21 三相三线应用

V9203 支持三相三线应用。

在三相三线应用中, B 相通道不参与计量, 所以, 用户应根据以下方式配置寄存器:
1. 将计量控制寄存器 2 (0xC002, MTPARA2) 中的 bit14 (MTMODE) 配置为 1;

- 2. 将 B 相功率(包括全波有功、无功、基波有功、无功)的比差值设为-1,即 0x80000000,并将 B 相功率的二次补偿值设为 0。至此, B 相功率没有意义;
- 3. 合相功率的组合配置中, B 相功率值为 0, 即不加入合相功率计算。

注意: 在三相三线制应用中, B 相电流有效值为 B 相电流传感器得到的电流值; B 相电压有效值(全波和基波), 是由 A/C 两相电压瞬时值 UA/UC 相减得到的电压瞬时值 UB'进行有效值计算获得的有效值。

10.22 校表

10.22.1 校表流程

用户可根据以下流程进行校表。

图 10-18 软件校表流程图

10.22.2 校表相关公式

本节所列计算公式适用于全波和基波计量。

1. 电流/电压有效值寄存器

本节所述计算公式适用于全波电压/电流有效值寄存器(R/W)和基波电压/电流有效值寄存器(R/W)。这几个寄存器的数值(Value)与输入信号间的关系如下:

Value = $V \times G \times K$

公式 10-19

其中,

V: 输入信号有效值, mV;

G: 当前增益;

K: 常数。K=2.5×10⁶;

2. 功率寄存器

本节所述计算公式适用于全波有功/无功/视在功率寄存器(R/W)和基波有功/无功/视在功率寄存器(R/W)。功率 寄存器的值可根据以下公式计算得到:

 $Value = Vi \times Gi \times Vv \times Gv \times K \times cos\theta \times p$

公式 10-20

其中,

Vi和 Vv: 分别为电流和电压通道输入信号大小;

Gi和 Gv: 分别为电流和电压通道的增益;

cosθ: 功率因数;

p: 相数;

K:系数。计算有功和无功功率寄存器的值时,K=750(三相四线),或K=650(三相三线)

3. 频率寄存器

本节所述频率计算公式适用于各相频率相位寄存器(R)。各相待测信号频率与频率寄存器的值之间存在如下关系:

 $f = \frac{3276800}{FRQ}$

公式 10-21

其中,

f为各相待测信号频率(Hz);

FRQ 为各相频率寄存器的值(十进制)。

4. 功率因数寄存器

本节所述功率因数计算公式适用于所有全波功率因数寄存器(R/W)和基波功率因数寄存器(R/W)。假设功率因数 寄存器的值为 Value,则实际功率因数可通过以下公式计算得到:

$$\cos\theta = \frac{\text{Value}}{2^{3\,1}}$$

公式 10-22

根据公式 8-22 可得到一个 2~0 的数,当此数大于1时,功率因数为1。

5. 能量门限值寄存器

本节所述能量门限值计算公式适用于所有有功能量累加门限值寄存器 (**R/W**)。用户可根据以下公式计算有功能量门 限值:

其中:

P: 输入额定电压和额定电流时的全波或基波合相有功功率寄存器的值;

T:时间常数,计算公式T = $\frac{3600 \times 1000}{PulseConstant \times U_n \times I_n \times PhaseNumbe}$ 公式 10-24

6. 比差寄存器

本节所述比差值计算公式适用于所有全波/基波电压/电流有效值比差寄存器和全波/基波有功/无功功率比差寄存器 值的计算,详见表 1-33、表 1-34、表 1-35 和表 1-37。

S =
$$2^{31}(\frac{1}{1+e}-1) + S_1(\frac{1}{1+e})$$
 公式 10-25

其中,

S: 比差寄存器的值, 补码形式;

S1: 原始比差值;

e:误差,计算方法:
$$e = \frac{I_1 - I_n}{I_n}$$
,或 $e = \frac{U_1 - U_n}{U_n}$

7. 角差寄存器

本节所述角差校正值的计算公式适用于所有角差校正寄存器值的计算。

$$N = -\frac{3011}{2} \times Error \times \frac{f_{ADC}}{819200}$$
 公式 10-26

其中,

N: 角差校正值;

fadc: ADC 时钟频率(Hz);

Error: 误差。

8. 角差分段电流门限值寄存器和全波有功功率比差分段电流门限值寄存器

本节所述分段电流门限值的计算公式适用于所有角差分段电流门限值寄存器(**R/W**)和全波有功功率比差分段电流 门限值寄存器(**R/W**)值的计算。

Value= ValueI×K

公式 10-27

其中,

ValueI: 额定电流时电流有效值寄存器的值,公式 10-19;

K:用户选择的分段点,该分段点以额定电流的百分比来标示,如15%In时,K=0.15。

注意:通过公式 10-27 计算得到的值并非最终的分段电流门限值。实际的分段电流门限值还与回差值有关。

9. 有效值与功率显示比例因数计算

根据公式 10-19 和公式 10-20,可以计算得到电压/电流有效值和功率寄存器的值,但是这些数据只是 ADC 采样数据,用户还需要电压/电流有效值的功率比例因数将获取的数据转换为直观的数据。

以 A 相全波电流有效值比例因数为例:

根据公式 10-19 计算全波 A 相电流有效值寄存器(ARTIA, 0xE83E)中数据:

Value = $V \times G \times K$ = 20×4×2.5×10⁶ = 20000000= 0xBEBC200

此时,实际电流值应为1.5000A,所以,通过以下方法得到电流有效值比例因数:

```
Ivalue = \frac{Value}{D}
15000 = \frac{200000000}{D}
D = \frac{200000000}{15000} = 13333
```

公式 10-28

D 就是电流有效值比例因数。用户只要把寄存器 ARTIA 的值除以该比例因数,即得到当前实际的 A 相全波电流有效值。默认电流有效值为四位小数。

用户可以采用同样的方法计算得到电压有效值与功率比例因数。

第11章中断系统

V9203包括了一个中断系统,用于管理中断资源并产生两个中断信号(IRQ0和IRQ1)。

IRQ0 和 IRQ1 各有一组中断使能寄存器: IRQ0 中断使能寄存器(0xA000, IRQEN0) 和 IRQ1 中断使能寄存器(0xA001, IRQEN1)。二者共享一个中断标志寄存器(0xA002, IRQFLAG)。用户可以通过配置中断使能寄存器灵活地在 IRQ0 和 IRQ1 上分配中断源。中断标志寄存器标志当前已发生的中断;使能寄存器则选定引脚 IRQ0(Pin30)或 IRQ1 (Pin31) 上输出相应中断源。

11.1 中断 0, 系统参数自检中断

中断0是系统参数自检中断。

在表 11-1 所列的 110 个寄存器中,寄存器 ZZPARA3 (0xEC2A) 与其它 109 个寄存器的配置数据的累加和应当为 0xFFFFFFF。

系统每 640ms 对这 110 个寄存器的值进行一次累加,其累加和即为系统计算得到的校验和。如果累加结果为 0xFFFFFFF, 说明当前数据保存正确, 否则, 说明数据错误。

系统自检结果体现在 IRQ0 上。数据出错时, IRQ0 发生中断,输出高电平。无论将 IRQ0 中断使能寄存器 (0xA000, IRQEN0)中的 bit0 配为何值,均无法禁止引脚 IRQ0 上输出该中断。但是,用户将 IRQ1 中断使能寄存器 (0xA001, IRQEN1)中的 bit0 清零,可以禁止 IRQ1 引脚输出该中断。

序号	地址	寄存器		可读(R) / 可写(W)	校验和计算	默认值
1	0xE954	分段 0 角差寄存器	WAEC0	R/W	32-bit	0
2	0xE955	分段1角差寄存器	WAEC1	R/W	32-bit	0
3	0xE956	分段2角差寄存器	WAEC2	R/W	32-bit	0
4	0xE957	分段3角差寄存器	WAEC3	R/W	32-bit	0
5	0xE958	分段 4 角差寄存器	WAEC4	R/W	32-bit	0
6	0xE95A	A 相全波有功功率比差分段 O 寄存器	WAPTAK0	R/W	32-bit	0
7	0xE95B	A 相全波有功功率比差分段 1 寄存器	WAPTAK1	R/W	32-bit	0
8	0xE95C	A 相全波有功功率比差分段 2 寄存器	WAPTAK2	R/W	32-bit	0
9	0xE95E	B相全波有功功率比差分段 0 寄存器	WAPTBK0	R/W	32-bit	0
10	0xE95F	B相全波有功功率比差分段1寄存器	WAPTBK1	R/W	32-bit	0

表 11-1 参与校验和运算的寄存器

序号	地址	寄存器		可读(R) / 可写(W)	校验和计算	默认值
11	0xE960	B相全波有功功率比差分段 2 寄存器	WAPTBK2	R/W	32-bit	0
12	0xE962	C相全波有功功率比差分段 0 寄存器	WAPTCK0	R/W	32-bit	0
13	0xE963	C相全波有功功率比差分段1寄存器	WAPTCK1	R/W	32-bit	0
14	0xE964	C相全波有功功率比差分段2寄存器	WAPTCK2	R/W	32-bit	0
15	0xE965	A 相全波无功功率比差寄存器	WAQTA	R/W	32-bit	0
16	0xE966	B相全波无功功率比差寄存器	WAQTB	R/W	32-bit	0
17	0xE967	C相全波无功功率比差寄存器	WAQTC	R/W	32-bit	0
18	0xE968	A 相全波电流有效值比差寄存器	WARTIA	R/W	32-bit	0
19	0xE969	B相全波电流有效值比差寄存器	WARTIB	R/W	32-bit	0
20	0xE96A	C相全波电流有效值比差寄存器	WARTIC	R/W	32-bit	0
21	0xE96B	全波零线电流有效值比差寄存器	WARTIN	R/W	32-bit	0
22	0xE96C	A 相全波电压有效值比差寄存器	WARTUA	R/W	32-bit	0
23	0xE96D	B相全波电压有效值比差寄存器	WARTUB	R/W	32-bit	0
24	0xE96E	C相全波电压有效值比差寄存器	WARTUC	R/W	32-bit	0
25	0xE96F	保留		R/W	32-bit,建议写 入0	0
26	0xE970	A相基波有功功率比差寄存器	WBPTA	R/W	32-bit	0
27	0xE971	B相基波有功功率比差寄存器	WBPTB	R/W	32-bit	0
28	0xE972	C相基波有功功率比差寄存器	WBPTC	R/W	32-bit	0
29	0xE973	A相基波无功功率比差寄存器	WBQTA	R/W	32-bit	0
30	0xE974	B相基波无功功率比差寄存器	WBQTB	R/W	32-bit	0
31	0xE975	C相基波无功功率比差寄存器	WBQTC	R/W	32-bit	0
32	0xE976	A相基波电流有效值比差寄存器	WBRTIA	R/W	32-bit	0
33	0xE977	B相基波电流有效值比差寄存器	WBRTIB	R/W	32-bit	0
34	0xE978	C相基波电流有效值比差寄存器	WBRTIC	R/W	32-bit	0
35	0xE979	A相基波电压有效值比差寄存器	WBRTUA	R/W	32-bit	0
36	0xE97A	B 相基波电压有效值比差寄存器 WBRTU		R/W	32-bit	0

序号	地址	寄存器		可读(R)/ 可写(W)	校验和计算	默认值
37	0xE97B	C相基波电压有效值比差寄存器	WBRTUC	R/W	32-bit	0
38	0xE97C	A 相角差分段电流门限值 0 寄存器	WTPA0A	R/W	32-bit	0
39	0xE97D	B 相角差分段电流门限值 0 寄存器	WTPA0B	R/W	32-bit	0
40	0xE97E	C 相角差分段电流门限值 0 寄存器	WTPA0C	R/W	32-bit	0
41	0xE97F	A 相角差分段电流门限值 1 寄存器	WTPA1A	R/W	32-bit	0
42	0xE980	B 相角差分段电流门限值 1 寄存器	WTPA1B	R/W	32-bit	0
43	0xE981	C 相角差分段电流门限值 1 寄存器	WTPA1C	R/W	32-bit	0
44	0xE982	A 相角差分段电流门限值 2 寄存器	WTPA2A	R/W	32-bit	0
45	0xE983	B 相角差分段电流门限值 2 寄存器	WTPA2B	R/W	32-bit	0
46	0xE984	C相角差分段电流门限值 2 寄存器 WTPA2C		R/W	32-bit	0
47	0xE985	A 相角差分段电流门限值 3 寄存器 WTPA		R/W	32-bit	0
48	0xE986	B 相角差分段电流门限值 3 寄存器	WTPA3B	R/W	32-bit	0
49	0xE987	C 相角差分段电流门限值 3 寄存器	WTPA3C	R/W	32-bit	0
50	0xE988	A 相全波有功功率比差分段电流门限 值 O 寄存器	WTPP0A	R/W	32-bit	0
51	0xE989	B相全波有功功率比差分段电流门限 值 0 寄存器	WTPP0B	R/W	32-bit	0
52	0xE98A	C相全波有功功率比差分段电流门限 值 O 寄存器	WTPP0C	R/W	32-bit	0
53	0xE98B	A 相全波有功功率比差分段电流门限 值1寄存器	WTPP1A	R/W	32-bit	0
54	0xE98C	B相全波有功功率比差分段电流门限 值1寄存器	WTPP1B	R/W	32-bit	0
55	0xE98D	C相全波有功功率比差分段电流门限 值1寄存器	WTPP1C	R/W	32-bit	0
56	0xE98E	A相有功功率二次补偿寄存器	WWAPTA	R/W	32-bit	0
57	0xE98F	B相有功功率二次补偿寄存器	WWAPTB	R/W	32-bit	0
58	0xE990	C相有功功率二次补偿寄存器 WWAPTC		R/W	32-bit	0

序号	地址	寄存器		可读(R) / 可写(W)	校验和计算	默认值
59	0xE991	A相无功功率二次补偿寄存器	WWAQTA	R/W	32-bit	0
60	0xE992	B相无功功率二次补偿寄存器	WWAQTB	R/W	32-bit	0
61	0xE993	C相无功功率二次补偿寄存器	WWAQTC	R/W	32-bit	0
62	0xE994	A 相全波电流有效值二次补偿寄存器	WWARTIA	R/W	32-bit	0
63	0xE995	B相全波电流有效值二次补偿寄存器	WWARTIB	R/W	32-bit	0
64	0xE996	C相全波电流有效值二次补偿寄存器	WWARTIC	R/W	32-bit	0
65	0xE997	全波零线电流有效值二次补偿寄存 器	WWARTIN	R/W	32-bit	0
66	0xE998	A 相全波电压有效值二次补偿寄存器	WWARTU A	R/W	32-bit	0
67	0xE999	B相全波电压有效值二次补偿寄存器	WWARTU B	R/W	32-bit	0
68	0xE99A	C相全波电压有效值二次补偿寄存器	WWARTU C R/W 32-bit		32-bit	0
69	0xE99B	保留		R/W	32-bit,建议写 入 0	0
70	0xE99C	A相基波有功功率二次补偿寄存器	WWBPTA	R/W	32-bit	0
71	0xE99D	B相基波有功功率二次补偿寄存器	WWBPTB	R/W	32-bit	0
72	0xE99E	C相基波有功功率二次补偿寄存器	WWBPTC	R/W	32-bit	0
73	0xE99F	A相基波无功功率二次补偿寄存器	WWBQTA	R/W	32-bit	0
74	0xE9A0	B相基波无功功率二次补偿寄存器	WWBQTB	R/W	32-bit	0
75	0xE9A1	C相基波无功功率二次补偿寄存器	WWBQTC	R/W	32-bit	0
76	0xE9A2	A相基波电流有效值二次补偿寄存器	WWBRTIA	R/W	32-bit	0
77	0xE9A3	B相基波电流有效值二次补偿寄存器	WWBRTIB	R/W	32-bit	0
78	0xE9A4	C相基波电流有效值二次补偿寄存器	WWBRTIC	R/W	32-bit	0
79	0xE9A5	A 相基波电压有效值二次补偿寄存器	WWBRTU A	R/W	32-bit	0
80	0xE9A6	B相基波电压有效值二次补偿寄存器	WWBRTU B	R/W	32-bit	0

序号	地址	寄存器		可读(R) / 可写(W)	校验和计算	默认值
81	0xE9A7	C相基波电压有效值二次补偿寄存器	WWBRTU C	R/W	32-bit	0
82	0xEC01	模拟控制寄存器 0	ZZANA0	R	32-bit 显示模拟控制寄 存 器 0 (0x8000 , ANCtrl0) 的配 置值	0
83	0xEC02	模拟控制寄存器 1	ZZANA1	R	32-bit 显示模拟控制寄 存 器 1 (0x8001 , ANCtrl1) 的 配 置值	0
84	0xEC03	模拟控制寄存器 2	ZZANA2	R	32-bit 显示模拟控制寄 存 器 2 (0x8002 , ANCtrl2) 的配 置值	0
85	0xEC04	模拟控制寄存器 3	ZZANA3	R	32-bit 显示模拟控制寄 存 器 3 (0x8003 , ANCtrl3)的配 置值	0
86	0xEC05	全波/基波合相视在功率组合寄存器	ZZAPPA	R/W	低 3-bit,高 29- bit 补 0	0
87	0xEC16	A 相电流预设直流偏置值寄存器	ZZDCIA	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0

序号	地址	寄存器		可读(R)/ 可写(W)	校验和计算	默认值
88	0xEC17	B 相电流预设直流偏置值寄存器	ZZDCIB	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
89	0xEC18	C相电流预设直流偏置值寄存器	ZZDCIC	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
90	0xEC19	零线电流预设直流偏置值寄存器	ZZDCIN	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
91	0xEC1A	A 相电压预设直流偏置值寄存器	ZZDCUA	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
92	0xEC1B	B相电压预设直流偏置值寄存器	ZZDCUB	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
93	0xEC1C	C相电压预设直流偏置值寄存器	ZZDCUC	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
94	0xEC1D	电流检测门限值寄存器	ZZDCUM	R/W	低 24-bit 有效, 高 8-bit 为 24- bit 数据的符号 位	0
95	0xEC1E	能量累加门限值寄存器高位	ZZEGYTH H	R/W	低 18-bit 有效, 高 14-bit 补 0	0
96	0xEC1F	能量累加门限值寄存器低位	ZZEGYTH L	R/W	32-bit	0

序号	地址	寄存器		可读(R) / 可写(W)	校验和计算	默认值
97	0xEC20	IRQ0 中断使能寄存器	ZZIRQ0	R	低 17-bit 有效, 高 15-bit 补 0 显示 IRQ0 中断 使 能 寄 存 器 (0xA000 , IRQEN0) 的配 置值	0
98	0xEC21	IRQ1 中断使能寄存器	ZZIRQ1	R	低 17-bit 有效, 高 15-bit 补 0 显示 IRQ1 中断 使 能 寄 存 器 (0xA001 , IRQEN1) 的配 置值	0
99	0xEC23	全波/基波合相有功功率 0 组合寄存器	ZZPA0	R/W	低 6-bit,高 26- bit 补 0	0
100	0xEC24	全波/基波合相有功功率 1 组合寄存器	ZZPA1	R/W	低 6-bit,高 26- bit 补 0	0
101	0xEC27	计量控制寄存器 0	ZZPARAO	R	32-bit 显示计量控制寄 存 器 0 (0xC000 , MTPARA0)的配 置值	0
102	0xEC28	计量控制寄存器 1	ZZPARA1	R	32-bit 显示计量控制寄 存 器 1 (0xC001, MTPARA1)的配 置值	0
103	0xEC29	计量控制寄存器 2	ZZPARA2	R	32-bit	0

序号	地址	寄存器		可读(R)/ 可写(W)	校验和计算	默认值
					显示计量控制寄 存 器 2 (0xC002 , MTPARA2)的配 置值	
104	0xEC2A	计量控制寄存器 3	ZZPARA3	R	32-bit 显示计量控制寄 存 器 3 (0xC003 , MTPARA3)的配 置值	0
105	0xEC34	CF 脉冲来源选择寄存器	ZZPCF0A	R/W	低 6-bit, 高 16- bit 补 0	0
106	0xEC47	全波/基波合相无功功率 0 组合寄存器	ZZQA0	R/W	低 6-bit,高 26- bit 补 0	0
107	0xEC48	全波/基波合相无功功率 1 组合寄存 器	ZZQA1	R/W	低 6-bit,高 26- bit 补 0	0
108						
109						
110						

11.2 中断 1~3, 过零点中断

中断 1~3 为各相电压信号的正向过零点中断。

在 V9203 中, A/B/C 三相基波电压信号(UA/UB/UC)的符号位可以直接在引脚 ZX0~ZX2(Pin34~Pin32)上输出,其中 UA 对应 ZX0,UB 对应 ZX1,UC 对应 ZX2。当上述引脚输出高电平(1)时,表示相应通道的基波电压信号为负数;输出低电平(0)时,表示相应通道的基波电压信号为正数。当上述三个引脚上的输出电平由1到0跳变时,表示相应通道的电压信号正向过零点。

当 IRQ0 中断使能寄存器 (0xA000, IRQEN0) 和/或 IRQ1 中断使能寄存器 (0xA001, IRQEN1) 中的 bit[3:1] 中的某几个 bit 被置位时,如果相应通道的电压信号过零点,则系统产生正向过零点中断,中断标志寄存器 (0xA002, IRQFLAG) 中的相应中断标志位置位,引脚 IRQ0 和/或 IRQ1 (Pin30 和/或 Pin31) 上输出高电平,向外部 MCU 提起中断。中断标志需要在中断响应过程中通过 SPI 通信清除。

11.3 中断 4~7, CF 脉冲中断

中断 4~7 为 CF 脉冲输出中断。

当引脚 CF0~CF3 口上输出 CF 脉冲高电平时, CF 脉冲的上升沿将触发对应中断。中断标志需要在中断响应过程中通过 SPI 通信清除。

11.4 中断 8~10, 全失压检测中断

中断 8~10 是电流检测中断。

电流检测电路对 DMA_SPI 接口输出的电流信号原始波形(采样频率为 6.4kHz)进行全波整流。如果电流波形连续5个采样大于预设的电流检测门限值[电流检测门限值寄存器(0xEC1D, ZZDCUM, R/W)],则产生电流检测信号。 当 IRQ0 中断使能寄存器(0xA000, IRQEN0)和/或 IRQ1 中断使能寄存器(0xA001, IRQEN1)中的 bit[13:11] 中的某几个 bit 被置位时,如果相应通道产生电流检测信号,则系统产生电流通道失压检测中断,中断标志寄存器 (0xA002, IRQFLAG)中的相应中断标志位置位,引脚 IRQ0和/或 IRQ1(Pin30和/或 Pin31)上输出高电平,向 外部 MCU 提起中断。这三个中断状态不会保持。当相应通道电流大于门限时,触发中断,当相应通道电流小于门限时, 自动取消中断。

此功能主要用于工作模式1和模式2下,快速判断是否有电流通过。

11.5 中断 11, 逆相序中断

中断11为逆相序检测中断。

V9203 可以根据三路电压信号正向过零点的发生顺序判断系统是否发生了逆相序。如果三路电压信号正向过零点 没有按照 A→B→C 的顺序发生,则系统判断为逆相序。此时,如果 IRQ0 中断使能寄存器(0xA000, IRQEN0)或 IRQ1 中断使能寄存器(0xA001, IRQEN1)的 bit15 被置位,则系统向外部 MCU 提起相序异常中断,并在中断标志 寄存器(0xA002, IRQFLAG)的 bit15 置标志位,中断标志需要在中断响应过程中通过 SPI 通信清除。

在三相三线应用中,此中断应当禁用。

11.6 中断 12, SPI 通信异常中断

当 V9203 作为 SPI 通信的从机与外部 MCU 通信发生异常时,唤起此中断。该中断标志需要在中断响应过程中通过 SPI 通信清除。

11.7 中断 13, 掉电中断

中断 13 是掉电中断(PowerDown, PD),当 VDCIN 引脚上的电平低于 1V 时,掉电监测电路输出高电平,向外部 MCU 通知系统已经开始掉电。当 IRQ0 中断使能寄存器(0xA000, IRQEN0)或 IRQ1 中断使能寄存器(0xA001, IRQEN1)中的 bit16 置位(掉电中断使能)时,中断标志寄存器(0xA002, IRQFLAG)中的 bit16 置位,系统向外部 MCU 提起掉电中断,同时在引脚 IRQ0(Pin30)或 IRQ1(Pin31)上输出高电平。

封装尺寸图

图索引

图	3-1 晶体振荡器(13.1072MHz)
冬	9-1 V9203 与外部 MCU 进行 SPI 通信
图	9-2 SPI 通信的数据帧
图	9-3 SPI 写操作时序
图	9-4 SPI 读操作时序 70
图	10-1 电能计量模块信号处理流程 73
图	10-2 RAM 空间分配
图	10-3 电流输入方式
图	10-4 电压输入方式
图	10-5 电压/电流信号模拟增益控制 79
图	10-6 角差校正原理图
图	10-7 角差分段补偿(以 A 相为例) 83
图	10-8 分段角差回差机制
图	10-9 DMA 传输方式
图	10-10 全波/基波有效值计算
图	10-11 有功/无功功率计算
冬	10-12 分段比差补偿(以A相为例)
图	10-13 全波有功功率分段比差补偿回差机制
冬	10-14 视在功率计算
图	10-15 合相功率计算
冬	10-16 能量累加(以A相/合相全波有功/视在能量累加为例)
图	10-17 零线电流信号处理流程
图	10-18 软件校表流程图

表索引

表	1-1 친	莫拟控制寄存器 0(0x8000, ANCtrl0)16
表	1-2 친	莫拟控制寄存器 1(0x8001, ANCtrl1) 18
表	1-3 친	莫拟控制寄存器 2(0x8002, ANCtrl2)19
表	1-4 천	莫拟控制寄存器 3(0x8003, ANCtrl3) 21
表	1-5 t	十量控制寄存器 0(0xC000, MTPARA0)22
表	1-6 τੇ	十量控制寄存器1(0xC001, MTPARA1)24
表	1-7 tੇ	十量控制寄存器 2(0xC002, MTPARA2)
表	1-8 tੇ	十量控制寄存器 3(0xC003, MTPARA3)
表	1-9 🗄	全波/基波合相有功功率 0 组合寄存器 (0xEC23, ZZPA0)
表	1-10	全波/基波合相有功功率1组合寄存器(0xEC24, ZZPA1)
表	1-11	全波/基波合相无功功率 0 组合寄存器(0xEC47, ZZQA0)
表	1-12	全波/基波合相无功功率1组合寄存器(0xEC48, ZZQA1)
表	1-13	全波/基波合相视在功率组合寄存器(0xEC05, ZZAPPA)
表	1-14	CF 脉冲来源选择寄存器(0xEC34, ZZPCF0A) 31
表	1-15	直流分量寄存器(R/W)
表	1-16	各相频率相位寄存器(R)
表	1-17	全波功率因数寄存器(R/W)
表	1-18	基波功率因数寄存器(R/W)
表	1-19	全波电压/电流有效值寄存器(R/W)
表	1-20	基波电压/电流有效值寄存器(R/W)
表	1-21	全波有功/无功/视在功率寄存器(R/W)
表	1-22	基波有功/无功/视在功率寄存器 (R/W)
表	1-23	全波有功/无功/视在能量累加寄存器(R/W) 41
表	1-24	全波有功/无功/视在能量脉冲计数器 (R/W) 42
表	1-25	基波有功/无功/视在能量累加寄存器 (R/W) 43
表	1-26	基波有功/无功/视在能量脉冲计数器 (R/W) 44
表	1-27	高速电路功率寄存器(R/W)
表	1-28	高速电路能量累加寄存器(R/W)
表	1-29	高速电路能量脉冲计数器 (R/W)
表	1-30	预设直流偏置值寄存器(R/W) 46
表	1-31	分段角差寄存器 (R/W)
表	1-32	角差分段电流门限值寄存器(R/W) 47
表	1-33	全波电压/电流有效值补偿寄存器(R/W)48
表	1-34	基波电压/电流有效值补偿寄存器(R/W) 49
表	1-35	全波有功/无功功率校正寄存器(R/W)
表	1-36	全波有功功率比差分段电流门限值寄存器(R/W)51
表	1-37	基波有功/无功功率校正寄存器(R/W) 51

表	1-38 能量累加门限值寄存器(R/W)52
表	1-39 表 1-40 电流检测门限值寄存器(0xEC1D, ZZDCUM, R/W)53
表	1-41 角差/比差分段信息寄存器(0xC004, PECAEC)53
表	1-42 IRQ0 中断使能寄存器(0xA000, IRQEN0)
表	1-43 IRQ1 中断使能寄存器(0xA001, IRQEN1) 55
表	1-44 中断标志寄存器(0xA002, IRQFLAG)56
表	5-1 降频计量模式配置
表	5-2 工作状态的三种工作模式
表	8-1 Bandgap 电路温度系数调整
表	9-1 数据帧组成说明
表	9-2 命令区与数据帧的作用对应表
表	9-3 SPI 通信中断使能位和中断标志
表	9-4 选择 SPI 接口内部滤波电路
表	9-5 系统时钟频率与滤波后的 SPI 接口最大通信速率 72
表	10-1 电能计量模块数据存储器 RAM
表	10-2 计量数据
表	10-3 模拟增益配置
表	10-4 开启/关闭电压/电流通道 ADC
表	10-5 ADC 时钟频率配置
表	10-6 角差校正相关寄存器
表	10-7 各通道数字信号输入使能
表	10-8 各路信号的数字增益配置
表	10-9 信号原始波形发送相关寄存器
表	10-10 DMA 模式发送数据帧(传输方式 0)
表	10-11 DMA 模式发送数据帧(传输方式 1)
表	10-12 数字积分器使能
表	10-13 有效值计算相关寄存器
表	10-14 有效值校正相关寄存器91
表	10-15 全波有功/无功功率计算相关寄存器
表	10-16 基波有功/无功功率计算相关寄存器
表	10-17 功率比差校正相关寄存器 94
表	10-18 功率二次补偿相关寄存器
表	10-19 视在功率计算相关寄存器
表	10-20 功率因数计算相关寄存器
表	10-21 合相有功/无功功率计算相关寄存器100
表	10-22 合相视在功率计算相关寄存器102
表	10-23 高速能量 CF 脉冲与输出引脚的对应关系103
表	10-24 高速能量累加和 CF 脉冲输出寄存器104
表	11-1 参与校验和运算的寄存器113

版本更新说明

时间	版本	修改内容
		正式发布,在试用版基础上做了如下修改:
		1. 更新 Pin2/Pin3/Pin18/Pin21/Pin22/Pin23 的描述
		2. "能量桶"统一更名为"能量累加寄存器"
		3. 更正"极限参数"中数字电源电路的"电流"值
		4. 更新"功耗"部分的描述
2012-10-11	V1.0	5. 更新 "7.7 其他高级命令"、 "8.16 起动/潜动判断"、 "8.14 能量累加
		和脉冲发生"、"8.23 校表"的描述
		6. 更正寄存器 0xA000 (bit0)、0xEC1E 和 0xEC1F 的描述
		7. 更新图 8-1、图 8-3、图 8-4 和"功能框图"
		8. 更正 "8.6 信号原始波形输出"中关于频率的描述
		9. 添加表 8-4~表 8-6 以及表 8-12~表 8-22
2016 00 20		1. 不支持电流信号的过零点输出。
2010-08-29	V2.0	2. 增加芯片温度测量章节。
2017-11-28	V2.1	1. 修改图 7.1 中的错误
		1. 芯片的存储温度改成-55 到 150
		2. 增加芯片的 AD 信号通道的输入极限描述: -0.3 到 3.3V
2018-06-26	V3.0	3. SPI 通讯图有错, MOSI 和 MISO 标号错误; 修改 SPCS 管腿为高电
		平时, MISO 的状态
		4. 表和图全部使用交叉引用,解决表号和图号在使用中错位的问题。
		1. 修改芯片温度测量功能
2018-08-25	V3.1	2. 修改电源输入电压为 2.6~3.6V
		3. 修改 DVCC 输出电压分布为 2.2~2.7V
2019-02-27	V3.2	1. 删除芯片 M 通道温度测量功能
2010 08 00	1/2 2	1. 修改能量脉冲计数器为 32 位
2019-08-09	V3.5	2. 修改相位测量公式
2021-07-05	V3.4	1. 更新 IEC 标准
		1. 更正表 1-19 中,当电能计量时钟频率为 819.2kHz 时,更新时间:
2022-08-13	V3.5	160ms; 稳定时间: 1200ms
		2. 删除潜动启动部分的内容
		1. 补充全波电流有效值代数和寄存器 MUN 说明
2023-7-11	V3 6	2. 增加 SPI 模式说明
2023-1-11	v5.0	3. 修复 10.20 章节乱序问题
		4. 修正角差校正公式