

VANGO TECHNOLOGIES, INC.

V93XX_D1

数据手册

目录

1	概过	<u>₿</u>		25
	1.1	功能	と框图	26
	1.2	引馬	即排布	27
		1.2.1	V9381 引脚排布	27
		1.2.2	V9360 引脚排布	27
		1.2.3	V9340 引脚排布	28
		1.2.4	管脚描述	28
	1.3	性負	b参数	30
	1.4	绝对	寸最大额定值	31
2	寄存	字器列表		32
	2.1	寄存	字器总列表	32
	2.2	模扎	以控制寄存器	37
		2.2.1	ANA_CTRL0 寄存器	38
		2.2.2	ANA_CTRL1 寄存器	38
	2.3	系统	充配置和状态寄存器	40
		2.3.1	SYS_BAUDCNT1 寄存器	40
		2.3.2	SYS_BAUDCNT8 寄存器	41
		2.3.3	SYS_INTSTS 寄存器	41
		2.3.4	SYS_INTEN 寄存器	46
		2.3.5	SYS_STS 寄存器	49
		2.3.6	SYS_MISC 寄存器	53
		2.3.7	SYS_BLKX_ADDR 寄存器	55
		2.3.8	SYS_IOCFGX 寄存器	56
		2.3.9	SYS_VERSION 寄存器	58
	2.4	计量	量控制寄存器	59
		2.4.1	DSP_CTRL0 寄存器	59
		2.4.2	DSP_CTRL1 寄存器	62
		2.4.3	DSP_CTRL2 寄存器	66
		2.4.4	DSP_CTRL3 寄存器	69
		2.4.5	DSP_CTRL4 寄存器	72
		2.4.6	DSP_CTRL5 寄存器	74
		2.4.7	DSP_CTRL6 寄存器	78
		2.4.8	DIP_SWELL_CTRL 寄存器	81
	2.5	计量	量数据寄存器	82
		2.5.1	直流分量寄存器	82
		2.5.2	有效值寄存器	82
		2.5.3	有功/无功功率寄存器	83
		2.5.4	基波通道数据寄存器	84
		2.5.5	电网频率寄存器	84
	2.6	能量	量累加寄存器	85

	2.7	相位测量寄存器相位测量寄存器	87
	2.8	功率潜动阈值寄存器	87
	2.9	电压骤升骤降寄存器	87
	2.10	快速检测寄存器	88
	2.11	波形数据寄存器	89
	2.12	校表参数寄存器	89
	2.12	.1 预设直流偏置值寄存器	89
	2.12	.2 有效值校正寄存器	89
	2.12	.3 功率校正寄存器	90
	2.12	.4 门限值寄存器	91
	2.12	.5 角差校正寄存器	93
	2.12	.6 带通滤波器系数寄存器	93
	2.13	校验和寄存器	94
3	电源系统		97
	3.1	掉电监测电路	97
	3.2	数字电源电路	98
4	电压基准	电路(Bandgap)	
5			
	5.1	外部输入高频时钟	
	5.2	高频 RC 振荡电路	
	5.3	外部输入低频时钟	
6		21 HP IIID V 1842/2017 F 1	
Ū	6.1	复位相关寄存器	
	6.2	外部复位(EXRST)	
	6.3	RX 复位	
	6.4	软件复位	
7	-	- VIT 文団	
'	7.1	概述	
		通信协议	
	7.3	广播写操作	
	7.4	读操作	
	7.5	写操作	
	7.6	块读操作	
8		女 (SPI) 接口 (SPI)	
0	平11 分 1 以 8.1	接口(SFI) 概述	
	8.2	<u> </u>	_
	8.3	支操作 	
	8.4	接口初始化	_
	8.5		
		4 线 SPI 模式	
0	8.6	3 线 SPI 模式	
9		处理单元	
	9.1	概述	
	9.2	特点	
4111	9.3	功能框图	124

	* *		. // / / / / / / / / / / / / / / / / /
	9.4	模拟信号输入	126
	9.5	模拟数字转换	128
	9.6	角差校正	129
	9.7	原始波形数据产生	130
	9.8	有效值计算和校正	131
	9.9	有功功率计算和校正	132
	9.10	无功功率计算和校正	132
	9.11	视在功率计算	133
	9.12	功率启动潜动判断	134
	9.13	线电压频率测量	135
	9.14	相位测量	139
	9.15	校表	139
10		波形主动上传与缓存	140
	10.1	波形主动上传	140
	10.1	.1 概述	140
	10.1	.2 时序和格式	141
	10.2	波形缓存	142
11		电信号监测	143
	11.1	过零点检测	143
	11.2	电压骤升骤降	144
	11.3	过压欠压和过流欠流	145
12		能量累加器	147
	12.1	高速能量累加器	148
	12.2	低速能量累加器	148
	12.3	CF 输出	149
	12.4	能量累加启动潜动判断	149
	12.5	主动能量累加数据上传	149
13		信号输出口	151
	13.1	概述	151
	13.2	功能描述	151
14		罗氏线圈处理	153
15		包装信息	154
16		回流焊工艺	157
17		封装尺寸图	158

表目录

表 1.	版本历史	10
表 2.	管脚描述	28
表 3.	性能参数	30
表 4.	绝对最大额定值	31
表 5.	寄存器总列表	32
表 6.	模拟控制寄存器 0(0x00,ANA_CTRL0)	38
表 7.	模拟控制寄存器 1(0x01,ANA_CTRL1)	38
表 8.	UART 发送数据 1Bit 计数值(0x70,SYS_BAUDCNT1)	40
表 9.	UART 接收数据 8Bit 计数值(0x71,SYS_BAUDCNT8)	41
表 10.	系统中断状态寄存器(0x72,SYS_INTSTS)	41
表 11.	系统中断使能寄存器(0x73,SYS_INTEN)	46
表 12.	SYS_STS 系统状态寄存器描述(0x74,SYS_STS)	49
表 13.	系统配置寄存器(0x75,SYS_MISC)	53
表 14.	块读地址寄存器 0(0x79,SYS_BLK0_ADDR)	55
表 15.	块读地址寄存器 1(0x7A,SYS_BLK1_ADDR)	55
表 16.	块读地址寄存器 2(0x7B,SYS_BLK2_ADDR)	55
表 17.	央读地址寄存器 3(0x7C,SYS_BLK3_ADDR)	55
表 18.	IO 配置寄存器 0(0x7D,SYS_IOCFG0)	56
表 19.	P0CFG Bit5~Bit0 说明	56
表 20.	IO 配置寄存器 1(0x7E,SYS_IOCFG1)	
表 21.	版本信息寄存器(0x7F,SYS_VERSION)	58
表 22.	计量控制寄存器 0(0x02,DSP_CTRL0)	59
表 23.	计量控制寄存器 1(0x03,DSP_CTRL1)	62
表 24.	计量控制寄存器 2(0x04,DSP_CTRL2)	66
表 25.	计量控制寄存器 3(0x05,DSP_CTRL3)	69
表 26.	计量控制寄存器 4(0x06,DSP_CTRL4)	72
表 27.	计量控制寄存器 5(0x07,DSP_CTRL5)	74
表 28.	计量控制寄存器(0x80, DSP_CTRL6)	78
表 29.	电压骤升骤降控制寄存器(0x8f,DIP_SWELL_CTRL)	81
表 30.	直流分量寄存器	
表 31.	电压/电流/测量信号(M)有效值寄存器	82
表 32.	有功/无功功率寄存器	83
表 33.	基波通道瞬时值寄存器	84
表 34.	基波通道平均值寄存器	
表 35.	电网频率寄存器(0x21,DSP_DAT_FRQ)	84
表 36.	能量累加寄存器	
表 37.	相位测量寄存器	
表 38.	功率潜动阈值寄存器	
表 39.	电压骤升骤降阈值寄存器	
表 40.	快速检测阈值寄存器	88

表 42.	表 41.	波形数据寄存器(0x69,DAT_WAVE)	89
表 44.	表 42.	预设直流偏置值寄存器	89
表 45.	表 43.	电压/电流/测量值有效值校正寄存器	89
表 46. 角差校正寄存器(0x33,DSP_CFG_PHC)	表 44.	全波有功/无功功率校正寄存器	90
表 48. 核验和寄存器(0x38,DSP_CFG_BPF)	表 45.	门限值寄存器	91
表 48. 校验和寄存器(0x38,DSP_CFG_CKSUM) 94 表 49. 参与参数自检育存器列表 94 表 50. Bandgap 电路相关寄存器 99 数 55. Demander of Park 105 表 51. Demander of Park 105 表 52. 复位相关寄存器 105 表 53. UART 通讯错误 109 表 54. UART 接口时序参数说明 110 表 55. 广播写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 111 表 56. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 113 表 57. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 113 表 59. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 59. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 116 表 60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 W93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压冲流通道模拟进盘配置 127 表 68. 开关电压冲流通道及 ADC. 128 表 69. 不同 fsmpl 下的角室分辨率和校正范围 129 表 70. 角差校正值配置 130 和 57. 计是通道信号数字增益配置 131 表 71. 开关电压冲流通道 ADC. 131 表 71. 开关电压冲流通道 ADC. 131 表 72. 计量通道信号数字增益配置 131 表 73. 太功动率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动开关和状态 134 表 76. 如率简动阈值存器 135 表 77. 线电压频率测量寄存器 135 表 77. 线电压频率测量寄存器 135 表 78. 频率常算波形个数描述 138 表 88. 频率常算波形个数描述 138 表 88. 频率常量下equency constant 描述 138 表 88. 数形级据上传数据格式 144 表 83. 被形缓存数据格式 142	表 46.	角差校正寄存器(0x33,DSP_CFG_PHC)	93
表 49. 参与参数自检高存器列表	表 47.	带通滤波器系数寄存器(0x37,DSP_CFG_BPF)	93
表 50. Bandgap 电路相关寄存器 99 表 51. 时钟产生电路相关寄存器 101 表 52. 复位相关寄存器 105 表 52. 复位相关寄存器 105 表 53. UART 通讯错误 109 表 54. UART 接口时序参数说明 109 表 55. 广播号操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 111 表 56. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 113 表 57. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 113 表 58. 与操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 59. 与操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 68. 实操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 68. 环净 L D L D L D L D L D L D L D L D L D L	表 48.	校验和寄存器(0x38,DSP_CFG_CKSUM)	94
表 51. 时钟产生的路相关寄存器	表 49.	参与参数自检寄存器列表	94
表 52. 复位相关寄存器	表 50.	Bandgap 电路相关寄存器	99
表 53. UART 通讯错误	表 51.	时钟产生电路相关寄存器	101
表 54. UART 接口时序参数说明	表 52.	复位相关寄存器	105
表 55. 广播写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 111 表 56. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 113 表 57. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 113 表 58. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 59. 写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 116 表 60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 按口初始化数据(16 进制) 122 表 66. 法提生 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 68. 开关电压伸流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 从 有差校正值配置 131 开关电压伸流通道 ADC 131 计显通道信号数字增益配置 131 表 72. 计显通道信号数字增益配置 131 表 73. 无功功率模式选择 134 视在功率计算源选择 134 视在功率计算源选择 134 视在方令 功率潜动阈值寄存器 135 表 75. 功率启动潜动开关和状态 134 表 75. 功率启动潜动开关和状态 134 表 75. 功率启动潜动开关和状态 136 表 79. 频率常量 Frequency constant 描述 138 表 79. 频率常量 Frequency constant 描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形丛传数据格式 144 波形级形型 大色数据格式 144 波形级形型 大色数据格式 144 波形级形型 大色数据格式 144	表 53.	UART 通讯错误	109
表 56. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 113 表 57. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 113 表 58. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 59. 写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 116 表 60. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压电流通道模拟增益配置 127 表 68. 开关电压电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 角差校正值配置 131 表 71. 开关电压中流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 134 表 75. 功率启动潜动开关和状态 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 136 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形处据格式 141 次 883. 波形缓存数据格式 141	表 54.	UART 接口时序参数说明	110
表 57. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 113 表 58. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 59. 写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 116 表 60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 WCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 W93XA 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压电流通道模拟增益配置 127 表 68. 开关电压电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率启动潜动开关和状态 134 表 77. 线电压频率测量寄存器 135 表 76. 频率常量 Frequency constant 描述 表 80. 过零点选择 139 频率常量 Frequency constant 描述 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形处数据上传数据格式 144 波形线 25 数形 26 数据格式 144 数 88. 波形缓存数据格式 144	表 55.	广播写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)	111
表 58. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 114 表 59. 写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 116 表 60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(60 进向) 122 表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动用关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 136 表 77. 线电压频率测量寄存器 136 表 78. 频率常量 Frequency constant 描述 138 表 9. 频率常量 Frequency constant 描述 138 表 9. 频率常量 Frequency constant 描述 138 表 9. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形处据长式 144 表 83. 波形缓存数据格式 144	表 56.	读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)	113
表 59. 写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 116 表 60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 117 表 61. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 118 表 62. SPI 通讯异常 119 表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据 16 进制) 122 表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道模划增益配置 127 表 68. 开关电压/电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 开发电压/电流通道 ADC 131 开发和扩充 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率启动潜动开关和状态 134 表 77. 线电压频率测量寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 79. 频率常量 Frequency constant 描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形上传数据格式 144 表 83. 波形缓存数据格式 144	表 57.	读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)	113
表 60.	表 58.	写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)	114
表 61.	表 59.	写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)	116
表 62. SPI 通讯异常	表 60.	块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)	117
表 63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 120 表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜剑开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形上传数据格式 141 表 83. 波形缓存数据格式 141	表 61.	块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)	118
表 64. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 121 表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道 ADC 128 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 计量通道信号数字增益配置 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形数据上传配置 140 表 82. 主动波形处据格式 141 波形缓存数据格式 141	表 62.	SPI 通讯异常	119
表 65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0) 121 表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形数据上传配置 140 表 82. 主动波形处据格式 142	表 63.	写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)	120
表 66. SPI 接口初始化数据(16 进制) 122 表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动开关和状态 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形数据上传配置 140 表 82. 主动波形上传数据格式 142	表 64.	读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)	121
表 67. 电压/电流通道模拟增益配置 127 表 68. 开关电压/电流通道 ADC 128 表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形上传数据格式 141	表 65.	读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)	121
表 68. 开关电压/电流通道 ADC	表 66.	SPI 接口初始化数据(16 进制)	122
表 69. 不同 fsmpl 下的角差分辨率和校正范围 129 表 70. 角差校正值配置 130 表 71. 开关电压/电流通道 ADC 131 表 72. 计量通道信号数字增益配置 131 表 73. 无功功率模式选择 133 表 74. 视在功率计算源选择 134 表 75. 功率启动潜动开关和状态 134 表 76. 功率潜动阈值寄存器 135 表 77. 线电压频率测量寄存器 136 表 78. 频率计算波形个数描述 138 表 79. 频率常量 Frequency constant 描述 138 表 80. 过零点选择 139 表 81. 主动波形数据上传配置 140 表 82. 主动波形上传数据格式 141 表 83. 波形缓存数据格式 142	表 67.	电压/电流通道模拟增益配置	127
表 70. 角差校正值配置	表 68.	开关电压/电流通道 ADC	128
表 71. 开关电压/电流通道 ADC	表 69.	不同 fsmpl 下的角差分辨率和校正范围	129
表 72.计量通道信号数字增益配置131表 73.无功功率模式选择133表 74.视在功率计算源选择134表 75.功率启动潜动开关和状态134表 76.功率潜动阈值寄存器135表 77.线电压频率测量寄存器136表 78.频率计算波形个数描述138表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 70.	角差校正值配置	130
表 73.无功功率模式选择133表 74.视在功率计算源选择134表 75.功率启动潜动开关和状态134表 76.功率潜动阈值寄存器135表 77.线电压频率测量寄存器136表 78.频率计算波形个数描述138表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 71.	开关电压/电流通道 ADC	131
表 74.视在功率计算源选择	表 72.	计量通道信号数字增益配置	131
表 75.功率启动潜动开关和状态134表 76.功率潜动阈值寄存器135表 77.线电压频率测量寄存器136表 78.频率计算波形个数描述138表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 73.	无功功率模式选择	133
表 76.功率潜动阈值寄存器135表 77.线电压频率测量寄存器136表 78.频率计算波形个数描述138表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 74.		
表 77.线电压频率测量寄存器136表 78.频率计算波形个数描述138表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 75.	功率启动潜动开关和状态	134
表 78.频率计算波形个数描述138表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 76.	功率潜动阈值寄存器	135
表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 77.	线电压频率测量寄存器	136
表 79.频率常量 Frequency constant 描述138表 80.过零点选择139表 81.主动波形数据上传配置140表 82.主动波形上传数据格式141表 83.波形缓存数据格式142	表 78.	频率计算波形个数描述	138
表 80.过零点选择	表 79.		
表 81. 主动波形数据上传配置 140 表 82. 主动波形上传数据格式 141 表 83. 波形缓存数据格式 142		· · ·	
表 82. 主动波形上传数据格式	表 81.		
表 83. 波形缓存数据格式	•		
	•		
	表 84.		

图目录

图 1.	功能框图	26
图 2.	电源系统	97
图 3.	掉电监测	97
图 4.	时钟系统	101
图 5.	外部复位时序图	105
图 6.	UART 通讯时 RX 复位时序图	106
图 7.	SPI 通讯时 RX 复位时序图	107
图 8.	软件复位时序图	108
图 9.	11-Bit 字节数据格式(LSB 到 MSB)	109
图 10.	V93XX 的 UART 接口接收与发送一个字节帧的时序	110
图 11.	广播写操作通讯协议	111
图 12.	读操作通讯协议	113
图 13.	写操作通讯协议	114
图 14.	块读地址映射	116
图 15.	块读操作通讯协议	117
图 16.	SPI 写操作通讯协议	120
图 17.	SPI 读操作通讯协议	120
图 18.	4 线 SPI 通讯时序	122
图 19.	3 线 SPI 通讯时序	122
图 20.	测量数据处理单元功能框图 1	124
图 21.	测量数据处理单元功能框图 2	125
图 22.	采用 CT 输入电流	126
图 23.	采用锰铜电阻分流网络输入电流	126
图 24.	电压输入方式	126
图 25.	电流/电压通道模拟增益配置	128
图 26.	角差校正原理图	129
图 27.	原始波形数据产生原理图	130
图 28.	电流/电压有效值计算信号处理	131
图 29.	有功功率计算信号处理	132
图 30.	无功功率计算信号处理	132
图 31.	视在功率计算信号处理	133
图 32.	线电压频率测量原理	135
图 33.	DMA SPI 传输时序	141
图 34.	电压/电流过零点输出图	143
图 35.	能量累加器功能框图	147
图 36.	信号输出口功能框图	151
图 37.	V9340 SOP8 编带信息	154
图 38.	V9360 SOP16 编带信息	155
图 39.	V9381 SOP24 编带信息	156
图 40.	典型无铅回流模式	157

版本历史

表1. 版本历史

版本	描述
-	第一版本
2.1	修改波形缓存使能开关
	修改 ANA_CTRL0 的 BIT13 和 BIT14 功能
	修改 ANA_CTRL1 的 BIT7 和 BIT23 功能
	对 TX、RX、RSTN 管腿增加上拉电阻
	RSTN 管腿保持低电平一定时间会复位芯片。该时间从 1ms 修改为
3.1	2ms
	开放电压电流通道输入短路功能
	片上参考电压从 1.225V 修改为 1.21V
	电源电压范围从 2.52~3.63V 修改为 2.6~3.6V
	掉电门限电压从 2.52~2.81V 修改为 2.6~3.1V
3.2	删除罗氏线圈内容
	修改 SYS_INTSTS 和 SYS_INTEN 寄存器,增加高速能量累加溢出
	中断
	修改 DSP_CTRL5 寄存器 DMA_MODE 控制位说明,增加说明:在使
	能 DMA 传输前,必须至少打开一路波形缓存和上传的通道。
	修改 DSP_CTRL5 寄存器 bit3 和 bit4 描述,即波形上传的 DMA 通道
	手动开关描述
3.3	删除 DSP_CTRL0 bit3 功能,即删除电网频率选择
	修改 UPERIOD 和 IPERIOD 功能描述,从半周波单位改为周波单位
	修改 ANA_CTRL0 的 SHORT_I,改为电流 IA 通道 ADC 输入短路
	修改 n 个 RCL 时钟间隔描述为确定时间,算法为最长时间间隔 x1.5
	修改 SYS_MISC 寄存器中的强制关闭能量累加器和 CF 输出功能描述
	掉电门限电压范围从 2.6~3.1V 改为 2.6~3.05V

2022.03.25	V3.4	修改时钟章节 CLK1 描述
		增加能量累加计数器说明
2022.05.19	V3.5	删除 IB 测温功能
		增加 V9340/V9343 型号
2022.08.13	V3.6	修改性能参数列表
2022.08.13	V3.0	修改 UART 波特率范围
2022.10.11	V3.7	修改 11.2 章节电压骤降描述
2023.03.01	V3.8	变更 V9343 为 V9340T
2023.05.08	V3.9	修改 ANA_CTRL1 寄存器的 RCHTRIM 描述;
2023.03.06	V 3.9	修改 P0CFG Bit5~Bit0 说明;
2023.08.18	V4.0	根据 D1 版本芯片修改;
2023.11.28	V4.1	修改 RCH 位宽;
2023.11.20		增加 V9340B;
		通用异步收发器(UART)章节增加描述;
2023.12.29	V4.2	数字信号处理器章节增加描述;
		增加校表章节;
2024.03.29	V4.3	删除 V9340T,V9340B;
		修改 RCL 典型值;
2024.05.20	V4.4	修改 SPI 通讯时 RX 复位时序图;
		修改 UART 通讯时 RX 复位时序图;
2024.07.09	V4.5	工作温度修正为-40~105℃;
2024.07.29	V4.6	修改描述性错误;
2024 40 20	\// 7	增加包装信息以及回流焊信息;
2024.10.28	V4.7	修改电气特性参数;
2025.01.22	V4.8	删除 POR 上电复位功能;
2025.07.15	V4.9	增加各型号编带信息;

1 概述

V93XX 是一个单相计量芯片,支持多种模式的全波和基波能量计量,并支持监测多种电网事件。同时,波形数据可通过 DMA 以 SPI 协议传输出去,或者通过波形缓存存在本地。

- 电源: 3.3V 电源供电, 电压输入范围 2.6~3.6V
- 基准电压: 1.21V (典型温度系数 10ppm/°C)
- 功耗:正常工作时芯片典型功耗约 2.6 mA(系统时钟为 6.5536 MHz)
- 计量特点:
 - 3路独立的过采样∑/△ADC: 1路电压; 1路A通道电流; 另外1路作为多功能通道,测量B通道电流
 - 计量精度高:

满足IEC 62053-21:2020/ IEC 62053-22:2020和IEC 62053-23:2020的要求

5000:1动态范围内,全波/基波有功能量计量误差小于0.1%

5000:1动态范围内,全波/基波无功能量计量误差小于0.2%

5000:1动态范围内,全波/基波电压/电流有效值误差小于0.5%

- 提供各种测量数据:

电压/电流信号直流分量

全波/基波电压/电流有效值瞬时值/平均值

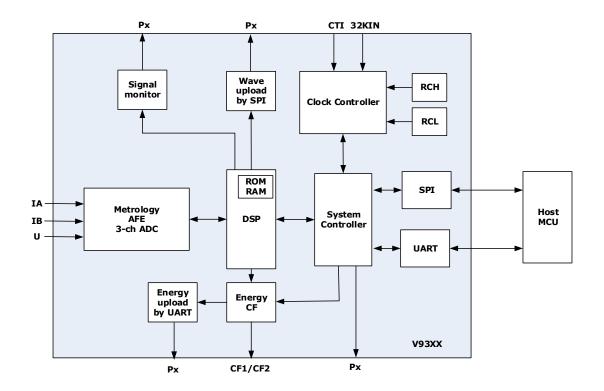
全波/基波有功/无功功率瞬时值/平均值

全波10或12周波有效值

全波视在功率瞬时值/平均值

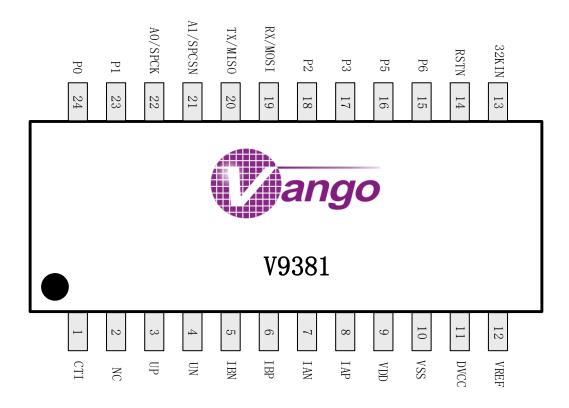
正向/反向能量,有功/无功/视在功率/电流有效值/常数值/基波通道可选

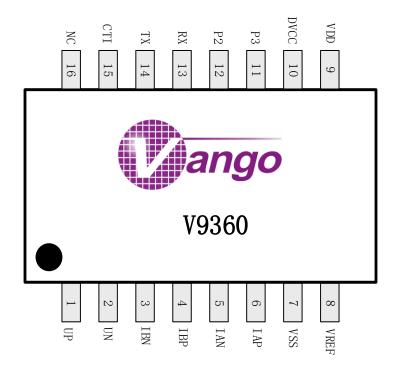
频率和相位


- 支持直流信号测量
- 支持软件校表
- 支持小信号加速校表
- 支持过流、过压、欠流、欠压、电压骤升、电压骤降检测
- 支持波形缓存和波形 DMA 发送
- 支持能量累加数据主动上传
- 电流输入:支持锰铜、CT、霍尔、TMR 及罗氏线圈
- CTI 管腿输入时钟频率为 6.5536 MHz

- 支持 UART 接口
- 支持 SPI 接口
- 工作温度: -40~+105°C
- 储存温度: -55~+150°C
- 封装: SSOP24、SOP16、SOP8

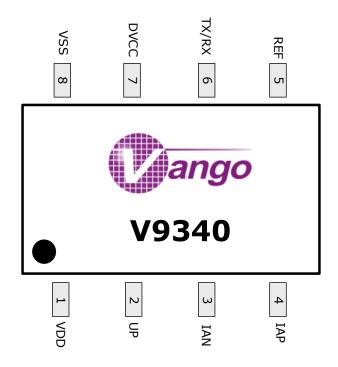
1.1 功能框图


图1. 功能框图



1.2 引脚排布

1.2.1 V9381 引脚排布



1.2.2 V9360 引脚排布

1.2.3 V9340 引脚排布

1.2.4 管脚描述

表2. 管脚描述

管脚编号			- 管脚名称	类型	功能描述	
V9381	V9360	V9340		关 玺	为配油灰	
1	15		CTI	输入	6.5536MHz 外灌时钟输入。	
2	16		NC		悬空	
3	1	2	UP	输入	电压采样信号 P 端输入	
4	2		UN	输入	电压采样信号 N 端输入	
5	3		IBN	输入	B路电流采样信号N端输入	
6	4		IBP	输入	B路电流采样信号P端输入	
7	5	3	IAN	输入	A 路电流采样信号 N 端输入	
8	6	4	IAP	输入	A路电流采样信号P端输入	
9	9	1	VDD	电源	3.3V 电源输入。外部应连接一个≥0.1µF 解耦电容。	
10	7	8	VSS	地	地	
11	10	7	DVCC	电源	内部数字电源输出。	

12 8 5 VREF 输入/输出 片上基准电压。应连接一个 1pF 解標电容后对接地。 13 - X32KIN 输入 32K时钟输入(数字 10 口) 14 - RSTN 输入 32K时钟输入(数字 10 口) 2位输入,低电平有效。 需要 2ms 以上才能在芯片内部 产生 RSTN 输入复位。 芯片内部常上拉电阻,上拉电阻,大小约50K 欧姆。 15 - P6 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 16 - P5 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 17 11 P3 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 18 12 P2 输出 UART 通信 RX 管脚,SPI 总线 从机数据输入 芯片内部带上拉电阻,上拉电阻 大小约50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信 RX 管脚,SPI 总线 从机数据输出 芯片内部带上拉电阻,上拉电阻 大小约50K 欧姆。 21 - A1/SPCSN 输入 UART 通信 地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信 地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单址中断/全部中断/主 动数据上传						外部应连接一个 0.1µF 解耦电
12 8 5 VREF 输入/输出 解耦电容后再接地。 13 - X32KIN 输入 32K时钟输入(数字IO 口) 20 反位输入,低电平有效。需要 2ms 以上才能在芯片内部产生 不含数。需要 2ms 以上才能在芯片内部产生 不含数据上校。 产生 RSTN 输入复位。 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 15 - P6 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 16 - P5 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 17 11 P3 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 18 12 P2 输出 UART通信 RX 管脚、SPI 总线 从机数据输入 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 19 13 6 RX/MOSI 输入 UART 通信 RX 管脚、SPI 总线 从机数据输入 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信地址选择管脚 1/SPI 片选信号 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时种线 23 - P1 输出 CF1/CF2/单独中断/全部中断/全部中断/主 24 - P0 输出 CF1/CF2/单独中断/全部中断/主						
13		_				片上基准电压。应连接一个 1µF
14	12	8	5	VREF	输入/输出 	解耦电容后再接地。
RSTN 令人	13	-		X32KIN	输入	32K 时钟输入(数字 IO 口)
14 - RSTN 输入 产生RSTN输入复位。 芯片内部带上拉电阻,上拉电阻,大小约 50K 欧姆。 15 - P6 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 16 - P5 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 17 11 P3 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 18 12 P2 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 19 13 6 RX/MOSI 输入 UART 通信 RX 管脚,SPI 总线 从机数据输入 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 20 14 6 TX/MISO WaRT 通信 TX 管脚,SPI 总线 从机数据输出 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/全部中断/主						复位输入,低电平有效。
						需要 2ms 以上才能在芯片内部
大小约 50K 欧姆。	14	-		RSTN	输入	产生 RSTN 输入复位。
15 - P6 输出 CF1/CF2/单独中断/全部中断/主 16 - P5 输出 CF1/CF2/单独中断/全部中断/主 17 11 P3 输出 CF1/CF2/单独中断/全部中断/主 18 12 P2 输出 CF1/CF2/单独中断/全部中断/主 19 13 6 RX/MOSI 输入 UART通信 RX 管脚, SPI 总线从机数据输入芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART通信 TX 管脚, SPI 总线从机数据输出芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART通信地址选择管脚 1/SPI片选信号 22 - A0/SPCK 输入 UART通信地址选择管脚 0/SPI时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/全部中断/主 24 - P0 输出 CF1/CF2/单独中断/全部中断/全部中断/主						芯片内部带上拉电阻,上拉电阻
15 - P6 输出 动数据上传 16 - P5 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 17 11 P3 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 18 12 P2 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 19 13 6 RX/MOSI 输入 UART 通信RX 管脚, SPI 总线从机数据输入芯片内部带上拉电阻、上拉电阻大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信TX 管脚, SPI 总线从机数据输出芯片内部带上拉电阻、上拉电阻大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主						大小约 50K 欧姆。
16	15			De	松山	CF1/CF2/单独中断/全部中断/主
16 - P5 输出 动数据上传 17 11 P3 输出 CF1/CF2/单独中断/全部中断/主动数据上传 18 12 P2 输出 CF1/CF2/单独中断/全部中断/主动数据上传 19 13 6 RX/MOSI 输入 UART 通信 RX 管脚, SPI 总线从机数据输入芯片内部带上拉电阻、上拉电阻大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信 TX 管脚, SPI 总线从机数据输出芯片内部带上拉电阻、上拉电阻大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/全部中断/主动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/全部中断/主	15	_		P0	捌山	动数据上传
17	16			DE	たい	CF1/CF2/单独中断/全部中断/主
17 11 P3 输出 动数据上传 18 12 P2 输出 CF1/CF2/单独中断/全部中断/主 19 13 6 RX/MOSI 输入 UART 通信 RX 管脚, SPI 总线从机数据输入芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信 TX 管脚, SPI 总线从机数据输出芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI时转线 23 - P1 输出 CF1/CF2/单独中断/全部中断/全部中断/主动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/全部中断/主	16	_		25	刑 凸	动数据上传
18 12 P2 输出 CF1/CF2/单独中断/全部中断/主 対数据上传 DART 通信 RX 管脚, SPI 总线 从机数据输入 芯片内部带上拉电阻, 上拉电阻 大小约 50K 欧姆。 UART 通信 TX 管脚, SPI 总线 从机数据输出 芯片内部带上拉电阻, 上拉电阻 大小约 50K 欧姆。 UART 通信 TX 管脚, SPI 总线 从机数据输出 芯片内部带上拉电阻, 上拉电阻 大小约 50K 欧姆。 UART 通信地址选择管脚 1/SPI 片选信号 CF1/CF2/单独中断/全部中断/主 対数据上传 CF1/CF2/单独中断/全部中断/主	47	11		P3	输出	CF1/CF2/单独中断/全部中断/主
18 12 P2 输出 动数据上传 19 13 6 RX/MOSI 输入 UART 通信 RX 管脚, SPI 总线从机数据输入芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信 TX 管脚, SPI 总线从机数据输出芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	17					动数据上传
30	10	10		P2	输出	CF1/CF2/单独中断/全部中断/主
19 13 6 RX/MOSI 输入 从机数据输入 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信 TX 管脚, SPI 总线 从机数据输出 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	10	12				动数据上传
19 13 6 RX/MOSI 输入 芯片內部帶上拉电阻,上拉电阻 大小约 50K 欧姆。 20 14 6 TX/MISO 输出 UART 通信 TX 管脚,SPI 总线 从机数据输出 芯片內部带上拉电阻,上拉电阻 大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主				RX/MOSI	输入	UART 通信 RX 管脚,SPI 总线
20 14 6 TX/MISO 输出 UART 通信 TX 管脚, SPI 总线从机数据输出芯片内部带上拉电阻,上拉电阻大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/全部中断/主动数据上传	10	13				从机数据输入
20 14 6 TX/MISO 输出 UART 通信 TX 管脚, SPI 总线 从机数据输出 芯片内部带上拉电阻, 上拉电阻 大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	19		0			芯片内部带上拉电阻,上拉电阻
20 14 6 TX/MISO 输出 从机数据输出 芯片内部带上拉电阻,上拉电阻 大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 						大小约 50K 欧姆。
20 14 6 TX/MISO 输出 芯片內部带上拉电阻,上拉电阻 大小约 50K 欧姆。 21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主						UART 通信 TX 管脚,SPI 总线
21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	20	14	6	TV/MICO	输出	从机数据输出
21 - A1/SPCSN 输入 UART 通信地址选择管脚 1/SPI 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	20		0	1 A/IVIISO		芯片内部带上拉电阻,上拉电阻
21 - A1/SPCSN 输入 片选信号 22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主						大小约 50K 欧姆。
22 - A0/SPCK 输入 UART 通信地址选择管脚 0/SPI 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	21			A4/CDCCN	松	UART 通信地址选择管脚 1/SPI
22 - A0/SPCK 输入 时钟线 23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	21	_		AI/SPCSN	制八	片选信号
23 - P1 输出 CF1/CF2/单独中断/全部中断/主 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	22			AO/CDCI/	給)	UART 通信地址选择管脚 0/SPI
23 - P1 输出 动数据上传 24 - P0 输出 CF1/CF2/单独中断/全部中断/主	22	-		AU/SPCK		时钟线
対数据上传	23			D1	給出	CF1/CF2/单独中断/全部中断/主
24	23	-		P1	输出 	动数据上传
	24	_		PΩ	输出	CF1/CF2/单独中断/全部中断/主
,	24	-		P0	୩ 出	动数据上传

1.3 性能参数

表3. 性能参数

除非特别说明,数据都是基于 TA=25℃, VDD=3.3V 的测试结果。

参数	最小	典型	最大	单位	说明			
通道间相差								
PF=0.8 容性		±0.05		度				
PF=0.5 感性		±0.05		度				
有功功率计量误差		0.1		%	动态范围 5000:1 @ 25°C 基波频偏±25%以内			
有功功率计量带宽		3.2		kHz				
无功功率计量误差		0.1		%	动态范围 5000:1 @ 25°C 基波频偏±25%以内			
无功功率计量带宽		1.6		kHz				
秒平均电压有效值误差		1		%	动态范围 2000:1 @ 25°C 基波频偏±25%以内			
电压有效值带宽		3.2		kHz				
秒平均电流有效值误差		1		%	动态范围 5000:1 @ 25°C 基波频偏±25%以内			
电流有效值带宽		3.2		kHz				
频率测量								
范围	40		70	Hz				
误差		0.01		Hz				
模拟输入信号		<u> </u>	l	1				
单端输入信号			±200	mV	峰值			
ADC 性能		<u> </u>	l	1				
直流失调			10	mV				
有效位数		23		BIT	包括符号位			
片上参考电压								
偏差	-20		20	mV	@ 25°C			
输出电压		1.208		V				
电源抑制比		92		dB				
温度系数		10	30	ppm/°C				
电源输入	2.6	3.3	3.6	V				

参数	最小	典型	最大	单位	说明				
掉电检测门限	2.6	2.8	3.05	٧					
数字电源输出(DVCC)	数字电源输出 (DVCC)								
电压		1.5		٧					
CTI				•					
内部高频 RCH 时钟		6.5536		MHz	偏差在 ±20% 以内				
外灌时钟模式下, 外部		6.5536		MHz					
输入高频时钟频率		0.5550		IVII IZ					
数字 IO,输出 TX									
输出高电平, V _{OH}	2.4		VDD	٧					
输出低电平, VoL	0		0.4	٧					
数字 IO,输入 RX									
输入高电平, V _{INH}	2.0		VDD	V					
			+0.3						
输入低电平, V _{INL}	-0.3		0.8	V					
输入电流,l _{IN}			1	μΑ					
输入电容,C _{IN}			10	pF					
UART 通信速率	120		1920	bps	波特率自适应				
	0		0						
 SPI 通信速率			800	KHz	与系统时钟相关,最高速度				
					是系统时钟的 1/16。				

1.4 绝对最大额定值

表4. 绝对最大额定值

参数	符号	最小	最大	单位	说明
模拟电源电压	VDD	-0.3	4	V	相对于地
数字电源电压	DVCC	-0.3	1.98	V	相对于地
电流采样通道输入	IAP/IAN/IBP/IB	-0.3	3.3	V	相对于地
电压	N				
电压采样通道输入	UP/UN	-0.3	3.3	V	相对于地
电压					
VDD上电速度	S _{VDD}	3.3V/s	1V/μs		
工作温度		-40	+105	°C	V9381/V9360/V9340
存储温度		-55	+150	°C	

2 寄存器列表

在发生片外输入 RSTN 复位、RX 复位或软复位时,所有寄存器被复位为默认值。以下表格中所有"默认值"均为十六进制数值。

2.1 寄存器总列表

表5. 寄存器总列表

寄存器	类型	地址	描述	默认值
ANA_CTRL0	R/W	0x00	模拟控制寄存器 0	0x00000000
ANA_CTRL1	R/W	0X01	模拟控制寄存器 1	0x00000000
DSP_CTRL0	R/W	0x02	计量控制寄存器 0	0x00000000
DSP_CTRL1	R/W	0x03	计量控制寄存器 1	0x00000000
DSP_CTRL2	R/W	0x04	计量控制寄存器 2	0x00000000
DSP_CTRL3	R/W	0x05	计量控制寄存器 3	0x00000000
DSP_CTRL4	R/W	0x06	计量控制寄存器 4	0x00000000
DSP_CTRL5	R/W	0x07	计量控制寄存器 5	0x00000000
DSP_DAT_PA	R	0x08	A通道瞬时有功功率	
DSP_DAT_QA	R	0x09	A通道瞬时无功功率	
DSP_DAT_SA	R	0x0A	A通道瞬时视在功率	
DSP_DAT_PB	R	0x0B	B通道瞬时有功功率	
DSP_DAT_QB	R	0x0C	B通道瞬时无功功率	
DSP_DAT_SB	R	0x0D	B通道瞬时视在功率	
DSP_DAT_RMS0UA	R	0x0E	电压瞬时有效值	
DSP_DAT_RMS0IA	R	0x0F	电流 A 瞬时有效值	
DSP_DAT_RMS0IB	R	0x10	电流 B 瞬时有效值	
DSP_DAT_CH1	R	0x11	基波可选通道 1 瞬时值	
DSP_DAT_CH2	R	0x12	基波可选通道2瞬时值	
DSP_DAT_PA1	R	0x13	A通道平均有功功率	
DSP_DAT_QA1	R	0x14	A通道平均无功功率	
DSP_DAT_SA1	R	0x15	A通道平均视在功率	
DSP_DAT_PB1	R	0x16	B通道平均有功功率	
DSP_DAT_QB1	R	0x17	B通道平均无功功率	
DSP_DAT_SB1	R	0x18	B通道平均视在功率	
DSP_DAT_RMS1U	R	0x19	电压平均有效值	

DSP_DAT_RMS1IA	R	0x1A	电流 A 平均有效值	
DSP_DAT_RMS1IB	R	0x1B	电流 B 平均有效值	
DSP_DAT_CH1_AV G	R	0x1C	基波可选通道 1 平均值	
DSP_DAT_CH2_AV G	R	0x1D	基波可选通道2平均值	
DSP_DAT_RMSU_A VG	R	0x1E	10 或 12 个周波(通过电网频率选择)的电压有效值平均值	
DSP_DAT_RMSIA_A VG	R	0x1F	10 或 12 个周波(通过电网频率选择)的电流 IA 有效值平均值	
DSP_DAT_RMSIB_A VG	R	0x20	10 或 12 个周波(通过电网频率选择)的电流 IB 有效值平均值	
DSP_DAT_FRQ	R	0x21	电网频率值	
DSP_DAT_DCU	R	0x22	电压通道直流值	
DSP_DAT_DCIA	R	0x23	电流 A 通道直流值	
DSP_DAT_DCIB	R	0x24	电流 B 通道直流值	
DSP_CFG_CALI_PA	R/W	0x25	有功功率 A 比差校正	0x00000000
DSP_CFG_DC_PA	R/W	0x26	有功功率 A 小信号校正	0x00000000
DSP_CFG_CALI_QA	R/W	0x27	无功功率 A 比差校正	0x00000000
DSP_CFG_DC_QA	R/W	0x28	无功功率 A 小信号校正	0x00000000
DSP_CFG_CALI_PB	R/W	0x29	有功功率 B 比差校正	0x00000000
DSP_CFG_DC_PB	R/W	0x2A	有功功率 B 小信号校正	0x00000000
DSP_CFG_CALI_QB	R/W	0x2B	无功功率 B 比差校正	0x00000000
DSP_CFG_DC_QB	R/W	0x2C	无功功率 B 小信号校正	0x00000000
DSP_CFG_CALI_R MSU	R/W	0x2D	电压有效值比差校正	0x00000000
DSP_CFG_RMS_DC	R/W	0x2E	电压有效值小信号校正	0x00000000
DSP_CFG_CALI_R MSIA	R/W	0x2F	电流 A 有效值比差校正	0x00000000
DSP_CFG_RMS_DC IA	R/W	0x30	电流 A 有效值小信号校正	0x00000000
DSP_CFG_CALI_R MSIB	R/W	0x31	电流 B 有效值比差校正	0x00000000
DSP_CFG_RMS_DC IB	R/W	0x32	电流 B 有效值小信号校正	0x00000000

			A 关松工宏	1
			角差校正寄存器 [10: 0]位是 A 通道角差校正值	
DSP_CFG_PHC	R/W	0x33	[26: 16]位是 B 通道角差校正值	0x00000000
			其范围为-766~767	
DSP_CFG_DCU	R/W	0x34	电压通道直流校正值	0x00000000
DSP_CFG_DCIA	R/W	0x35	电流 A 通道直流校正值	0x00000000
DSP_CFG_DCIB	R/W	0x36	电流 B 通道直流校正值	0x00000000
			带通滤波器系数。该参数的设置与计	
			量控制寄存器 0 (0x02,	
			DSP_CTRL0)的 Bit[7:4]	
			DSP_MODE 相关。	
			DSP_MODE=0、1、2 时,写入	
Dep ere ppr	R/W	0.27	0x806764B6;	0,0000000
DSP_CFG_BPF	R/VV	0x37	DSP_MODE=6、7 时,写入	0x00000000
			0x80DD7A8C;	
			DSP_MODE=8 时,写入	
			0x82B465F0;	
			其余模式不支持频率测量,该寄存器	
			需写 0x0。	
DSP_CFG_CKSUM	R/W	0x38	校验和配置寄存器	0x00000000
	R/W	N 020	能量累加防潜阈值,当防潜能量累加	0x00000000
FOV CDDTU			值超过该阈值并且高速能量寄存器的	
EGY_CRPTH	IN/VV	0x39	累加值未超过该阈值时,高速能量累	000000000
			加器的累加值会被清掉。	
			能量累加阈值。由于能量累加器为	
EGY PWRTH	R/W	0x3A	46Bit,实际高速能量累加器累加阈值	00000000
LOT_I WICH	IN/VV	UXSA	为该阈值*16384; 低速能量累加器累	0x00000000
			加阈值为该阈值*4。	
EGY_CONST1	R/W	0x3B	能量累加器 1 累加常数	0x00000000
EGY_OUT1L	R/W	0x3C	能量累加器 1 累加值低位	0x00000000
FOV OUT14	DAA	Ovan	能量累加器 1 累加值高位	0,0000000
EGY_OUT1H	FV/VV	R/W 0x3D	低 14Bit 有效	0x00000000
EGY_CFCNT1	R	0x3E	能量累加器 1 脉冲计数器	0x00000000
EGY_CONST2	R/W	0x3F	能量累加器 2 累加常数	0x00000000

EGY_OUT2L	R/W	0x40	能量累加器 2 累加值低位	0x00000000
			能量累加器2累加值高位	
EGY_OUT2H	R/W	0x41	低 14Bit 有效	0x00000000
EGY_CFCNT2	R	0x42	能量累加器 2 脉冲计数器	0x00000000
EGY_CONST3	R/W	0x43	能量累加器 3 累加常数	0x00000000
EGY_OUT3	R/W	0x44	能量累加器 3 累加值	0x00000000
EGY_CFCNT3	R	0x45	能量累加器 3 脉冲计数器	0x00000000
EGY_CONST4	R/W	0x46	能量累加器 4 累加常数	0x00000000
EGY_OUT4	R/W	0x47	能量累加器 4 累加值	0x00000000
EGY_CFCNT4	R	0x48	能量累加器 4 脉冲计数器	0x00000000
EGY_CONST5	R/W	0x49	能量累加器 5 累加常数	0x00000000
EGY_OUT5	R/W	0x4A	能量累加器 5 累加值	0x00000000
EGY_CFCNT5	R	0x4B	能量累加器 5 脉冲计数器	0x00000000
EGY_CONST6	R/W	0x4C	能量累加器 6 累加常数	0x00000000
EGY_OUT6	R/W	0x4D	能量累加器 6 累加值	0x00000000
EGY_CFCNT6	R	0x4E	能量累加器 6 脉冲计数器	0x00000000
EGY_CONST7	R/W	0x4F	能量累加器 7 累加常数	0x00000000
EGY_OUT7	R/W	0x50	能量累加器 7 累加值	0x00000000
EGY_CFCNT7	R	0x51	能量累加器 7 脉冲计数器	0x00000000
EGY_CONST8	R/W	0x52	能量累加器 8 累加常数	0x00000000
EGY_OUT8	R/W	0x53	能量累加器8累加值	0x00000000
EGY_CFCNT8	R	0x54	能量累加器 8 脉冲计数器	0x00000000
DSP_OV_THL	R/W	0x55	潜动判断下限阈值	0x00000000
DSP_OV_THH	R/W	0x56	潜动判断上限阈值	0x00000000
DSP_SWELL_THL	R/W	0x57	电压骤升下限阈值。	0x00000000
DSP_SWELL_THH	R/W	0x58	电压骤升上限阈值。	0x00000000
DSP_DIP_THL	R/W	0x59	电压骤降下限阈值	0x00000000
DSP_DIP_THH	R/W	0x5A	电压骤降上限阈值	0x00000000
FD_OVTH	R/W	0x5B	快速检测过压阈值	0x00000000
	1 1 7 7 7	0,00	位宽为 30Bit	
FD_LVTH	LVTH R/W	0x5C	快速检测欠压阈值	0x0000000
			位宽为 30Bit	- CACCOCCOCC
FD IA OCTH	R/W	0x5D	快速检测电流A通道过流阈值	0x0000000
			位宽为 30Bit	

FD_IA_LCTH	R/W	0x5E	快速检测电流 A 通道欠流阈值	0x00000000	
			位宽为 30Bit		
FD_IB_OCTH	R/W	0x5F	快速检测电流 B 通道过流阈值	0x00000000	
			位宽为 30Bit		
FD_IB_LCTH	R/W	0x60	快速检测电流 B 通道欠流阈值	0x00000000	
		07100	位宽为 30Bit	on out of the state of the stat	
DSP PHS STT	R/W	0x61	相位测量控制位,写操作使能一次相		
		ono i	位测量。		
DSP_PHS_U	R	0x62	电压相位值	1	
DSP_PHS_UN	R	0x63	电压过零点之前波形数据值	0	
DSP_PHS_UP	R	0x64	电压过零点之后波形数据值	0x80000000	
DSP_PHS_I	R	0x65	电流相位值	1	
DSP_PHS_IN	R	0x66	电流过零点之前波形数据值	0	
DSP_PHS_IP	R	0x67	电流过零点之后波形数据值	0x80000000	
	R		波形数据读取, 可重复读取该地址,		
DAT WAVE		0x69	从而获得完整波形数据。若不需要读	0	
DAI_WAVE			完全部数据,可通过 DSP_CTRL5 的		
			Bit31 复位读取地址。		
			电压骤升时间记录,半波为单位。		
DAT_SWELL_CNT	R/C	0x6A	24Bit 有效。向该寄存器写任意值,可	0	
			清零该计数值。		
			电压骤降时间记录,半波为单位。		
DAT_DIP_CNT	R/C	0x6B	24Bit 有效。向该寄存器写任意值,可	0	
			清零该计数值。		
			软件复位寄存器		
SYS_SFTRST	W	0x6C	向该地址写入 0x4572BEAF,则发生		
			一次软复位。		
SYS BAUDCNT1	R	0x70	UART 发送数据 1Bit 期间累计的系统		
313_BAUDCN11	K	UX7U	时钟计数值		
CVC DALIDONITO		0x71	UART 接收数据 8Bit 期间累计的系统		
SYS_BAUDCNT8	R	UX/ I	时钟计数值		
SYS_INTSTS	R/C	0x72	中断状态寄存器		
SYS_INTEN	R/W	0x73	中断使能寄存器	0x00000000	
SYS_STS	R	0x74	系统状态寄存器		

SYS_MISC	R/W	0x75	系统配置寄存器	
SYS_BLK0_ADDR	R/W	0x79	块读地址寄存器 0	0
SYS_BLK1_ADDR	R/W	0x7A	块读地址寄存器 1	0
SYS_BLK2_ADDR	R/W	0x7B	块读地址寄存器 2	0
SYS_BLK3_ADDR	R/W	0x7C	块读地址寄存器 3	0
SYS_IOCFG0	R/W	0x7D	P0, P1, P2, P3 输出配置寄存器	0
SYS_IOCFG1	R/W	0x7E	P4, P5, P6 输出配置寄存器	0
SYS_VERSION	R	0x7F	版本号寄存器	
DSP_CTRL6	R/W	0x80	计量控制寄存器 6	0
FUND_CALI_PA	R/W	0x81	基波有功功率 A 比差校正	0x00000000
FUND_DC_PA	R/W	0x82	基波有功功率 A 小信号校正	0x00000000
FUND_CALI_QA	R/W	0x83	基波无功功率 A 比差校正	0x00000000
FUND_DC_QA	R/W	0x84	基波无功功率 A 小信号校正	0x00000000
FUND_CALI_PB	R/W	0x85	基波有功功率 B 比差校正	0x00000000
FUND_DC_PB	R/W	0x86	基波有功功率B小信号校正	0x00000000
FUND_CALI_QB	R/W	0x87	基波无功功率 B 比差校正	0x00000000
FUND_DC_QB	R/W	0x88	基波无功功率B小信号校正	0x00000000
FUND_CALI_RMSU	R/W	0x89	基波电压有效值比差校正	0x00000000
FUND_RMS_DCU	R/W	0x8a	基波电压有效值小信号校正	0x00000000
FUND_CALI_RMSIA	R/W	0x8b	基波电流 A 有效值比差校正	0x00000000
FUND_RMS_DCIA	R/W	0x8c	基波电流 A 有效值小信号校正	0x00000000
FUND_CALI_RMSIB	R/W	0x8d	基波电流 B 有效值比差校正	0x00000000
FUND_RMS_DCIB	R/W	0x8e	基波电流 B 有效值小信号校正	0x00000000
DIP_SWELL_CTRL	R/W	0x8f	电压骤升骤降控制寄存器	0x00000000
SWELL_REG_MAX_	R/C	0x90	电压骤升最大值时间记录寄存器	0x00000000
CNT	D/0	0.04		
DIP_REG_MIN_CNT	R/C	0x91	电压骤降最小值时间记录寄存器	0x00000000
SWELL_REG_MAX	R	0x92	电压骤升的最大值	0x00000000
DIP_REG_MIN	R	0x93	电压骤降的最小值	0x7FFFFFF
ZERO_TH_U	R/W	0x94	电压过零点检测阈值寄存器	0x00000000
ZERO_TH_I	R/W	0x95	电流过零点检测阈值寄存器	0x00000000

2.2 模拟控制寄存器

在发生片外输入 RSTN 复位、RX 复位或软复位时,所有模拟控制寄存器被复位为默认值。以下表

格中所有"默认值"均为十六进制数值。

模拟控制寄存器的地址范围为 0x00~0x01,均可读可写。

所有模拟控制寄存器均需要参与参数配置自检校验。

2.2.1 ANA_CTRL0 寄存器

表6. 模拟控制寄存器 0 (0x00, ANA_CTRL0)

0x00,R/W,模拟控制寄存器 0,ANA_CTRL0					
位		默认值	功能说明		
Bit[31:14]	保留	0	为保证系统正常工作,必须写入默认值。		
			IB 通道输入信号选择。		
Bit13	MEA	0	0: IB 差分输入:		
			1: 保留。		
Bit12	保留	0	为保证系统正常工作,必须写入默认值。		
			电流 IA 通道 ADC 输入短路。		
Bit11	SHORT_I	0	0: 短路		
			1: 正常		
	CHODE		电压 U 通道 ADC 输入短路。		
Bit10	SHORT_ V	0	0: 短路		
	V		1: 正常		
Bit[9:0]	保留	0	为保证系统正常工作,必须写入默认值。		

2.2.2 ANA_CTRL1 寄存器

表7. 模拟控制寄存器 1 (0x01, ANA_CTRL1)

0x01, R/V	0x01,R/W,模拟控制寄存器 1,ANA_CTRL1				
位		默认值	默认值 功能说明		
			ADC 时钟频率选择。		
			00 对应 819.2KHz。		
Di+[24·20]	ADCKSEL<1:0>		00: ×1;		
Bit[31:30] ADCKSEL<1:0>	0	01: ×2;			
		10: ×1/4;			
			11: ×1/2		

0x01, R/V	0x01,R/W,模拟控制寄存器 1,ANA_CTRL1				
位		默认值	功能说明		
			6.5M RC 时钟频率调节。		
			默认 0b00000 为不调整。		
Di+[20-24]	RCHTRIM<5:0>	0	0b000001~0b011111:每增加一个比特,时钟频率相		
Bit[29:24]	RCHTRIWS.02	U	对于 0b000000 时的频率增加 1.25%;		
			0b111111~0b100000: 每减小一个比特,时钟频率相		
			对于 0b000000 时的频率减少 1.25%。		
Bit23	保留	0	为保证系统正常工作,必须写入默认值。		
			6.5M RC 时钟开关。		
Bit22	RCCLK PD	0	0: 打开;		
DILEZ	NOOLK_I B	O	1: 关闭		
			正常工作下,该 Bit 必须设置为 0。		
Bit[21:15]	保留	0	为保证系统正常工作,必须写入默认值。		
			B 路电流 ADC 增益。		
			000: 4;		
			001: 1;		
Bit[14:12]	GIB<2:0>	0	010: 32;		
			011: 16;		
			100/101/110/111:禁止		
			正常工作下,GIB<2: 0>建议设置为 000。		
			电压 ADC 增益。		
Bit11	GU	0	0: 8;		
Bitti		Ü	1: 4		
			正常工作下,该 Bit 建议设置为 0。		
			A 路电流 ADC 增益。		
Bit[10:8] GIA<2:0>		000: 32;			
		001: 16;			
	GIA<2:0>	0	010: 4;		
			011: 1;		
			100~111: 禁止		
			正常工作下,GIA<2:0>建议设置为000。		

0x01, R/V	0x01,R/W,模拟控制寄存器 1,ANA_CTRL1				
位		默认值	功能说明		
			CTI 外灌时钟使能。		
Bit7	XRST_PD	0	0: 使能;		
			1: 禁止		
Bit[6:5]	保留	0	为保证系统正常工作,必须写入默认值。		
			BGP 温度系数粗调。		
			00: 0ppm;		
Bit[4:3]	RESTL<1:0>	0	01: -58ppm;		
			10: +111ppm;		
			11: +56ppm		
			BGP 温度系数细调。		
			000: 0ppm;		
			001: +7ppm;		
			010: +14ppm;		
Bit[2:0]	REST<2:0>	0	011: +28ppm;		
			100: -32ppm;		
			101: -21ppm;		
			110: -14ppm;		
			111: -7ppm		

2.3 系统配置和状态寄存器

发生片外输入 RSTN 复位、RX 复位或软复位时,系统配置寄存器被复位为默认值。下表中的"默认值"均为十六进制数值。

在 V93XX 中,系统寄存器主要控制串口、中断、RAM、IO 输出功能。SYS_INTEN(0x73)控制中断使能,SYS_INTSTS(0x72)是中断状态寄存器。SYS_MISC(0x75)的 Bit[4: 0]用于配置串口工作、中断引脚输出是否反向、掉电时是否关闭能量累加器、校验和错误时是否关闭能量累加器。SYS_RAMADDE(0x77)控制内部 RAM 地址,SYS_RAMDATA 是内部 RAM 数据寄存器,SYS_BLK0_ADDR~SYS_BLK3_ADDR 配置块读操作地址。SYS_IOCFG0~SYS_IOCFG1 是 IO输出配置寄存器。

2.3.1 SYS_BAUDCNT1 寄存器

表8. UART 发送数据 1Bit 计数值(0x70,SYS_BAUDCNT1)

0x70,UART 接收数据 1 位计数值,SYS_BAUDCNT1					
位		R/W	默认值	功能说明	
Bit[31:14]	保留				
Bit[13:0]	BAUDCNT1	R	-	这个寄存器存储的是 UART 发送数据帧头的第一个 Bit 的系统时钟计数值。	

2.3.2 SYS_BAUDCNT8 寄存器

表9. UART 接收数据 8Bit 计数值(0x71,SYS_BAUDCNT8)

0x71,UART 接收数据 8 位计数值,SYS_BAUDCNT8						
位 R/W 默认值		默认值	功能说明			
Bit[31:17]	保留					
Bit[16:0]	BAUDCNT8	R	-	这个寄存器存储的是 UART 接收数据帧头前 8Bit 的系统时钟计数值。		

2.3.3 SYS_INTSTS 寄存器

表10. 系统中断状态寄存器(**0x72**,**SYS_INTSTS**)

0x72,中断状态寄存器,SYS_INTSTS					
位		R/W	默认值	功能说明	
Bit[31:30]	保留				
				高速能量累加器 2 的溢出中断位。	
				读 0: 能量溢出未发生。	
Bit29	EGY2OV	R/C	0	读 1: 能量溢出发生。	
				写 0: 无影响。	
				写 1: 清该 bit。	
				高速能量累加器 1 的溢出中断位。	
				读 0: 能量溢出未发生。	
Bit28	EGY10V	R/C	0	读 1: 能量溢出发生。	
				写 0: 无影响。	
				写 1: 清该 bit。	
				电压骤降标志位。	
Bit27	UDIP	R/C	0	读 0: 电压骤降未发生。	
				读 1: 电压骤降发生。	

R/W 飲入値 対象説明 写り: 无影响。 写り: 无影响。 写り: 无影响。 写り: 无影响。 写り: 无影响。 写り: 无影响。 写り: 五影响。 写り: 五淡歩き位。 读り: 日本文流大生。 写り: 五淡地。 日本文流大生。 写り: 五淡地。 日本文流大生。 写り: 五淡地。 日本文流大生。 写り: 五淡地。 日本文流大生。 写り: 五淡响。 写り: 五淡响。 写り: 五淡响。 写り: 五淡响。 写り: 五淡地。 写り: 五彩响。 写り: 五彩响。 写り: 五彩响。 写り: 五影响。 写り: 五景波 日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日	0x72,中断	0x72,中断状态寄存器,SYS_INTSTS				
Bit	位		R/W	默认值	功能说明	
Bit26					写 0: 无影响。	
Bit26					写 1: 清该 Bit。	
Bit26					电压骤升标志位。	
Bit25 IBLC R/C O Ex Ex Ex Ex Ex Ex Ex					读 0: 电压骤升未发生。	
Bit25	Bit26	USWELL	R/C	0	读 1: 电压骤升发生。	
Bit25 IBLC R/C 0 读 1: IB 欠流标志位。 读 0: IB 欠流未发生。 写 0: 无影响。 写 1: 清该 Bit。 Bit24 IBOC R/C 0 读 1: IB 过流未发生。 读 0: IB 过流未发生。 读 0: IB 过流未发生。 词 0: 无影响。 写 1: 清该 Bit。 Bit23 IALC R/C 0 读 1: IA 欠流未发生。 读 0: IA 欠流标志位。 读 0: IA 欠流未发生。 词 0: 无影响。 写 1: 清该 Bit。 Bit24 IACC R/C 0 读 1: IA 欠流发生。 写 0: 无影响。 写 1: 清该 Bit。 Bit25 IACC R/C 0 读 1: IA 过流未发生。 读 0: IA 过流未发生。 词 0: IA 过流未发生。 词 0: IA 过流未发生。 词 0: IA 过流未发生。 词 0: IA 过流发生。 写 0: 无影响。 写 1: 清该 Bit。					写 0: 无影响。	
Bit25					写 1: 清该 Bit。	
Bit25 IBLC R/C 0 读 1: IB 欠流发生。 写 0: 无影响。 写 1: 清该 Bit。 IB 过流标志位。 读 0: IB 过流未发生。					IB 欠流标志位。	
					读 0: IB 欠流未发生。	
Bit24 IBOC R/C O 读 1: 清该 Bit。 IB 过流标志位。 读 0: IB 过流未发生。 读 1: IB 过流发生。 写 0: 无影响。 写 1: 清该 Bit。 IA 欠流标志位。 读 0: IA 欠流标志位。 读 0: IA 欠流标太生。 写 0: 无影响。 写 1: 清该 Bit。 IA 过流标志位 读 0: IA 过流标志位 读 0: IA 过流标志位 读 0: IA 过流未发生。 写 0: Ta 影响。 写 1: 清该 Bit。 IA 过流发生。 写 0: Ta 影响。 写 1: 清该 Bit。 U 通道欠压标志位。 读 0: U 通道欠压未发生。 写 0: 无影响。	Bit25	IBLC	R/C	0	读 1: IB 欠流发生。	
Bit24 IBOC R/C 0 读 1: IB 过流标志位。 读 0: IB 过流未发生。 读 1: IB 过流发生。 写 0: 无影响。 写 1: 清该 Bit。 Bit23 IALC R/C 0 读 1: IA 欠流未发生。 读 0: IA 欠流未发生。 读 0: IA 欠流发生。 写 0: 无影响。 写 1: 清该 Bit。 Bit24 IAOC R/C 0 读 1: IA 过流未发生。 读 0: IA 过流未发生。 写 0: 无影响。 写 1: 清该 Bit。 Bit25 IAOC R/C 0 读 1: IA 过流发生。 写 0: 无影响。 写 1: 清该 Bit。					写 0: 无影响。	
Bit24 IBOC R/C 0 读 1: IB 过流未发生。					写 1: 清该 Bit。	
Bit24 IBOC R/C 0 读 1: IB 过流发生。 写 0: 无影响。 写 1: 清该 Bit。 IA 欠流标志位。 读 0: IA 欠流未发生。					IB 过流标志位。	
写 0: 无影响。					读 0: IB 过流未发生。	
Bit23	Bit24	IBOC	R/C	0	读 1: IB 过流发生。	
Bit23 IALC R/C 0 读 1. IA 欠流标志位。 读 0. IA 欠流未发生。 写 0. 无影响。 写 1. 清该 Bit。 Bit22 IAOC R/C 0 读 1. IA 过流未发生。 读 0. IA 过流未发生。 写 0. 无影响。 写 1. 清该 Bit。 Bit21 ULV R/C 0 读 1. U通道欠压未发生。 读 0. U通道欠压未发生。 写 0. 无影响。 写 1. 清该 Bit。					写 0: 无影响。	
Bit23 IAC R/C 0 读 1: IA 欠流未发生。 读 1: IA 欠流发生。 写 0: 无影响。 写 1: 清该 Bit。 IA 过流标志位 读 0: IA 过流未发生。 读 1: IA 过流未发生。 可 0: 无影响。 写 1: 清该 Bit。 U 通道欠压标志位。 读 0: U 通道欠压未发生。 词 0: 无影响。					写 1: 清该 Bit。	
Bit23					IA 欠流标志位。	
写 0: 无影响。 写 1: 清该 Bit。 IA 过流标志位 读 0: IA 过流未发生。 读 1: IA 过流发生。 写 0: 无影响。 写 1: 清该 Bit。 U通道欠压标志位。 读 0: U通道欠压未发生。 读 0: U通道欠压未发生。 写 0: 无影响。 写 0: 无影响。					读 0: IA 欠流未发生。	
Bit22 IAOC R/C 0 IA 过流标志位 读 0: IA 过流未发生。 写 0: 无影响。 写 0: 无影响。 写 1: 清该 Bit。 U通道欠压标志位。 读 0: U通道欠压未发生。 读 0: U通道欠压未发生。 写 0: 无影响。 写 0: 无影响。	Bit23	IALC	R/C	0	读 1: IA 欠流发生。	
Bit22 IAOC R/C 0 读 1: IA 过流标志位 读 0: IA 过流未发生。 写 0: 无影响。 写 1: 清该 Bit。 Bit21 ULV R/C 0 读 1: U通道欠压未发生。 写 0: 无影响。					写 0: 无影响。	
Bit22 IAOC R/C 0 读 0: IA 过流未发生。 写 0: 无影响。 写 0: 无影响。 写 1: 清该 Bit。 U通道欠压标志位。 读 0: U通道欠压未发生。 读 0: U通道欠压未发生。 写 0: 无影响。 写 0: 无影响。					写 1: 清该 Bit。	
Bit22 IAOC R/C 0 读 1: IA 过流发生。 写 0: 无影响。 写 1: 清该 Bit。 U通道欠压标志位。 读 0: U通道欠压未发生。 读 0: U通道欠压未发生。 写 0: 无影响。					IA 过流标志位	
写 0: 无影响。 写 1: 清该 Bit。 U通道欠压标志位。 读 0: U通道欠压未发生。 读 1: U通道欠压发生。 写 0: 无影响。					读 0: IA 过流未发生。	
Bit21 ULV R/C 0 以通道欠压标志位。 读 0: U通道欠压未发生。 读 1: U通道欠压发生。 写 0: 无影响。	Bit22	IAOC	R/C	0	读 1: IA 过流发生。	
Bit21 ULV R/C 0 以通道欠压标志位。 读 0: U通道欠压未发生。 读 1: U通道欠压发生。 写 0: 无影响。					写 0: 无影响。	
Bit21 ULV R/C 0 读 0: U 通道欠压未发生。 jg 0: U 通道欠压发生。 jg 1: U 通道欠压发生。 写 0: 无影响。					写 1: 清该 Bit。	
Bit21 ULV R/C 0 读 1: U 通道欠压发生。 写 0: 无影响。					U通道欠压标志位。	
写 0: 无影响。					读 0: U 通道欠压未发生。	
	Bit21	ULV	R/C	0	读 1: U 通道欠压发生。	
写 1: 清该 Bit。					写 0: 无影响。	
,					写 1: 清该 Bit。	

0x72,中断状态寄存器,SYS_INTSTS			
位		默认值	功能说明
			U通道过压标志位。
			读 0: U 通道过压未发生。
UOV	R/C	0	读 1: U 通道过压发生。
			写 0: 无影响。
			写 1: 清该 Bit。
			SPI 传输错误标志位。当下面条件任一事件发
			生时,该 Bit 会置 1。
			A, SPI 超时(连续 2 个时钟上升沿间隔大于
			20ms)。
CDI EDD	D/C		B, SPI 时钟数错误(4 线 SPI 时钟数不等于
SPI_ERR	R/C	0	48)。
			读 0: SPI 错误未发生。
			读 1: SPI 错误发生。
			写 0: 无影响。
			写 1: 清该 Bit。
保留			
			UART 传输错误标志位。当下面条件任一事件
			发生时,该 Bit 会置 1。
			A. UART 接收超时(连续 2 个字节的间隔大
			于 20ms(具体时间与系统时钟的准确度有
	R/C	0	关))。
UART_ERR			B. UART 接收的校验位错误。
			C. UART 接收的校验和字节错误。
			读 0: UART 错误未发生。
			读 1: UART 错误发生。
			写 0: 无影响。
			写 1: 清该 Bit。
			主动波形数据上传完成标志位。
			读 0: 主动波形数据上传未完成。
DMA_FINISH	R/C	0	读 1: 主动波形数据上传已完成。
			写 0: 无影响。
			写 1: 清该 Bit。
	UOV SPI_ERR WART_ERR	UOV R/C SPI_ERR R/C UART_ERR R/C	R/W 默认値 R/C の SPI_ERR R/C の R/C の

0x72,中断	0x72,中断状态寄存器,SYS_INTSTS			
位		R/W	默认值	功能说明
Bit14	CKERR	R/C	0	校验和错误事件标志位。校验和从正确到错误,该 Bit 会置 1。 读 0:校验和错误事件未发生。 读 1:校验和错误事件发生。 写 0:无影响。 写 1:清该 Bit。
Bit13	HSE_FAIL	R/C	0	CTI 外灌时钟缺失事件标志位。 读 0: CTI 外灌时钟缺失事件未发生。 读 1: CTI 外灌时钟缺失事件发生。 写 0: 无影响。 写 1: 清该 Bit。 该标志位只会在使用外灌时钟并且外灌时钟缺失一定时间后拉高。
Bit12	REF_ERR	R/C	0	Reference 错误标志位。 读 0: Reference 错误事件未发生。 读 1: Reference 错误事件发生。 写 0: 无影响。 写 1: 清该 Bit。
Bit11	BIST_ERR	R/C	0	BIST 错误标志位。 读 0: BIST 错误事件未发生。 读 1: BIST 错误事件发生。 写 0: 无影响。 写 1: 清该 Bit。
Bit10	ISIGN	R/C	0	电流过零点标志位,可通过计量控制寄存器 1 (0x03, DSP_CTRL1)的 Bit20 选择过零点通道为 IA 或者 IB 通道,可通过计量控制寄存器 1 (0x03, DSP_CTRL1)的 Bit19~Bit18选择过零点方向。读 0:电流过零点未发生。读 1:电流过零点发生。写 0:无影响。写 1:清该 Bit。

0x72,中断	0x72,中断状态寄存器,SYS_INTSTS				
位		R/W	默认值	功能说明	
Bit9	USIGN	R/C	0	电压过零点标志位,可通过计量控制寄存器 1 (0x03, DSP_CTRL1) 的 Bit19~Bit18 选择过零点方向。读 0: 电压过零点未发生。读 1: 电压过零点发生。写 0: 无影响。写 1: 清该 Bit。	
Bit8	WAVE_OVER FLOW	R/C	0	波形缓存溢出标志位。 读 0: 波形缓存未溢出。 读 1: 波形缓存已溢出。 写 0: 无影响。 写 1: 清该 Bit。	
Bit7	WAVE_STOR E	R/C	0	波形缓存完成标志位。 读 0: 波形缓存未完成。 读 1: 波形缓存已完成。 写 0: 无影响。 写 1: 清该 Bit。	
Bit6	WAVE_UPD	R/C	0	波形数据更新标志位。 读 0: 未更新。 读 1: 已更新。 写 0: 无影响。 写 1: 清该 Bit。	
Bit5	CURRMS_UP D	R/C	0	瞬时有效值数据更新标志位。 读 0: 未更新。 读 1: 已更新。 写 0: 无影响。 写 1: 清该 Bit。	
Bit4	AVGRMS_UP D	R/C	0	平均有效值数据更新标志位。 读 0: 未更新。 读 1: 已更新。 写 0: 无影响。 写 1: 清该 Bit。	

0x72,中断	0x72,中断状态寄存器,SYS_INTSTS			
位 R/W 默认值		默认值	功能说明	
				瞬时功率数据更新标志位。
	OLIDDOMED			读 0: 未更新。
Bit3	CURPOWER_ UPD	R/C	0	读 1 : 已更新。
	OI D			写 0: 无影响。
				写 1: 清该 Bit。
				平均功率数据更新标志位。
	AV COOMED			读 0: 未更新。
Bit2	AVGPOWER_ UPD	R/C	0	读 1 : 已更新。
	UPD			写 0: 无影响。
				写 1: 清该 Bit。
				掉电事件发生标志位。当电源输入(VDD)低
		R/C		于 2.8V (±7%), 发生掉电。
Di+1	Bit1 INTPDN		0	读 0: 掉电未发生。
DILI		K/C	0	读 1: 掉电发生。
				写 0: 无影响。
				写 1: 清该 Bit。
				相位测量完成标志位。这个 Bit 在相位测量开
				始时,会自动清零。
Bit0	INTUPHSDON	D/C	0	读 0: 相位测量未完成。
DILU	Е	R/C	0	读 1: 相位测量已完成。
				写 0: 无影响。
				写 1: 清该 Bit。

2.3.4 SYS_INTEN 寄存器

表11. 系统中断使能寄存器(0x73, SYS_INTEN)

0x73,中断使能寄存器,SYS_INTEN				
位		R/W	默认值	功能说明
Bit[31:30]	保留		0	为保证系统正常工作,必须写入默认值。
Bit29	EGY2OV	R/W	0	高速能量累加器 2 的溢出状态中断使能。 0: 关闭中断; 1: 使能中断;

0x73,中断	0x73,中断使能寄存器,SYS_INTEN			
位		R/W	默认值	功能说明
				高速能量累加器 1 的溢出状态中断使能。
Bit28	EGY10V	R/W	0	0: 关闭中断;
				1: 使能中断;
				电压骤降中断。
Bit27	UDIP	R/W	0	0: 关闭中断;
				1: 使能中断
				电压骤升中断。
Bit26	USWELL	R/W	0	0: 关闭中断;
				1: 使能中断
				IB 欠流中断。
Bit25	IBLC	R/W	0	0: 关闭中断;
				1: 使能中断
				IB 过流中断。
Bit24	IBOC	R/W	0	0: 关闭中断;
				1: 使能中断
				IA 欠流中断。
Bit23	IALC	R/W	0	0: 关闭中断;
				1: 使能中断
				IA 过流中断。
Bit22	IAOC	R/W	0	0: 关闭中断;
				1: 使能中断
				U通道欠压中断。
Bit21	ULV	R/W	0	0: 关闭中断;
				1: 使能中断
				U通道过压中断。
Bit20	UOV	R/W	0	0: 关闭中断;
				1: 使能中断
				SPI 传输错误中断。
Bit19	SPI_ERR	R/W	0	0: 关闭中断;
				1: 使能中断
Bit[18:17]	保留		0	为保证系统正常工作,必须写入默认值。

0x73,中断	0x73,中断使能寄存器,SYS_INTEN			
位		R/W	默认值	功能说明
				UART 传输错误中断。
Bit16	UART_ERR	R/W	0	0: 关闭中断;
				1: 使能中断
				主动波形数据上传完成中断。
Bit15	DMA_FINISH	R/W	0	0: 关闭中断;
				1: 使能中断
				校验和错误中断。
Bit14	CKERR	R/W	0	0: 关闭中断;
				1: 使能中断
				CTI 外灌时钟缺失中断。
Bit13	HSE_FAIL	R/W	0	0: 关闭中断;
				1: 使能中断
				Reference 错误中断。
Bit12	REF_ERR	R/W	0	0: 关闭中断;
				1: 使能中断
				BIST 错误中断。
Bit11	BIST_ERR	R/W	0	0: 关闭中断;
				1: 使能中断
				电流过零点中断。
Bit10	ISIGN	R/W	0	0: 关闭中断;
				1: 使能中断
				电压过零点中断。
Bit9	USIGN	R/W	0	0: 关闭中断;
				1: 使能中断
				波形缓存溢出中断。
Bit8	WAVE_OVERFL	R/W	0	0: 关闭中断;
	OW			1: 使能中断
				波形缓存完成中断。
Bit7	WAVE_STORE	R/W	0	0: 关闭中断;
	_			1: 使能中断
<u> </u>				

0x73,中断	0x73,中断使能寄存器,SYS_INTEN			
位		R/W	默认值	功能说明
				波形数据更新中断。
Bit6	WAVE_UPD	R/W	0	0: 关闭中断;
				1: 使能中断
				瞬时有效值数据更新中断。
Bit5	CURRMS_UPD	R/W	0	0: 关闭中断;
				1: 使能中断
				平均有效值数据更新中断。
Bit4	AVGRMS_UPD	R/W	0	0: 关闭中断;
				1: 使能中断
	CHRROWER HR			瞬时功率数据更新中断。
Bit3	CURPOWER_UP	R/W	0	0: 关闭中断;
				1: 使能中断
	AVCDOWED UD			平均功率数据更新中断。
Bit2	AVGPOWER_UP	R/W	0	0: 关闭中断;
				1: 使能中断
				掉电事件中断。
Bit1	INTPDN	R/W	0	0: 关闭中断;
				1: 使能中断
				相位测量完成中断。
Bit0	INTUPHSDONE	R/W	0	0: 关闭中断;
				1: 使能中断

2.3.5 SYS_STS 寄存器

表12. SYS_STS 系统状态寄存器描述(0x74, SYS_STS)

0x74,系统状态寄存器,SYS_STS					
位		R/W	默认值	功能说明	
Bit31	保留				
Bit30	UDIP	R	0	电压骤降状态位。 1: 电压处于骤降状态。 0: 电压未处于骤降状态。	

放 大田 大田 大田 大田 大田 大田 大田	0x74,系统\	0x74,系统状态寄存器,SYS_STS					
Bit29	位		R/W	默认值	功能说明		
Bit28					电压骤升状态位。		
Bit28	Bit29	USWELL	R	0	1: 电压处于骤升状态。		
Bit28					0: 电压未处于骤升状态。		
Bit27					IB 欠流中断状态位		
Bit27	Bit28	IBLC	R	0	1: IB 处于欠流状态。		
Bit27 IBOC R 0 1: IB 处于过流状态。 0: IB 未处于过流状态。 0: IA 未处于交流状态。 0: IA 未处于交流状态。 0: IA 未处于交流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: U通道欠压中断状态位。 0: U通道处于欠压状态。 0: U通道未处于欠压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道是处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 2: 外部复位。 1: 上电复位。 2: 外部复位。 4: 软复位。 其它: 保留。 2: 外部复位。 4: 软复位。 4: 软复位。 其它: 保留。 6: 量累加器 2 潜动状态位。					0: IB 未处于欠流状态。		
Bit26 IALC R 0 IA 欠流中断状态位。					IB 过流中断状态位。		
Bit26 IALC R 0 IA 欠流中断状态位。 1: IA 处于欠流状态。 0: IA 未处于欠流状态。 0: IA 未处于过流状态。 0: U通道欠压中断状态位。 1: U通道处于欠压状态。 0: U通道未处于欠压状态。 0: U通道未处于欠压状态。 0: U通道未处于过压状态。 0: Dia 和表处于过压状态。 0: U通道未处于过压状态。 0: Dia 和表处于过底状态。 0: Dia 和表处于过压状态。 0: Dia 和表处于过程、0:	Bit27	IBOC	R	0	1: IB 处于过流状态。		
Bit26 IALC R 0 1: IA 处于欠流状态。 0: IA 未处于欠流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: IA 未处于过流状态。 0: U通道欠压中断状态位。 0: U通道处于欠压状态。 0: U通道未处于欠压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 2: 外部复位。 1: 上电复位。 2: 外部复位。 3: RX低电平复位。 4: 软复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。					0: IB 未处于过流状态。		
Bit25 IAOC R 0 1.4 建流中断状态位。 Bit24 ULV R 0 1.1 IA 处于过流状态。 Bit24 ULV R 0 1.1 U通道欠压中断状态位。 Bit23 UOV R 0 1.1 U通道处于欠压状态。 Bit23 UOV R 0 1.1 U通道处于过压状态。 O: U通道未处于过压状态。 0: U通道处于过压状态。 2: 外部复位源状态位。 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 0: 启动状态:					IA 欠流中断状态位。		
Bit25 IAOC R 0 1: IA 过流中断状态位。 Bit24 ULV R 0 1: U通道欠压中断状态。 O: IA 未处于过流状态。 O: IA 未处于过流状态。 O: U通道欠压中断状态位。 O: U通道处于欠压状态。 O: U通道未处于欠压状态。 O: U通道未处于欠压状态。 O: U通道未处于过压状态。 O: D通道未处于过压状态。	Bit26	IALC	R	0	1: IA 处于欠流状态。		
Bit25 IAOC R 0 1: IA 处于过流状态。 0: IA 未处于过流状态。 U通道欠压中断状态位。 1: U通道处于欠压状态。 0: U通道未处于欠压状态。 0: U通道未处于过压状态。 0: U通道处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 1: 上电复位。 2: 外部复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2					0: IA 未处于欠流状态。		
Bit24 ULV R 0 1: U通道欠压中断状态位。 Bit23 UOV R 0 1: U通道处于欠压状态。 Bit23 UOV R 0 1: U通道处于欠压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 2: 外部复位。 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 0: 启动状态:					IA 过流中断状态位。		
Bit24 ULV R 0 1: U通道欠压中断状态位。 Bit23 UOV R 0 1: U通道处于欠压状态。 0: U通道未处于欠压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 1: L通道处于过压状态。 2: 外部复位。 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 0: 启动状态:	Bit25	IAOC	R	0	1: IA 处于过流状态。		
Bit24 ULV R 0 1: U通道处于欠压状态。 0: U通道未处于欠压状态。 U过压状态位。 1: U通道处于过压状态。 0: U通道未处于过压状态。 0: U通道未处于过压状态。 当前复位源状态位。 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 1: D通道处于过压状态。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 能量累加器 2 潜动状态位。 0: 启动状态;					0: IA 未处于过流状态。		
Bit23 UOV R 0 U过压状态位。 U过压状态位。 U通道处于过压状态。 U通道未处于过压状态。 U通道未处于过压状态。 Bit[22:20] RST_SOU RCE R - 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 0: 启动状态;					U通道欠压中断状态位。		
Bit23 UOV R 0 1: U通道处于过压状态。	Bit24	ULV	R	0	1: U 通道处于欠压状态。		
Bit23 UOV R 0 1: U通道处于过压状态。 0: U通道未处于过压状态。 当前复位源状态位。 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。 0: 启动状态; 0: 启动状态;					0: U 通道未处于欠压状态。		
Bit[22:20] RST_SOU RCE R - 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。					U过压状态位。		
Bit[22:20] RST_SOU RCE R - 当前复位源状态位。 1: 上电复位。 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。 0: 启动状态;	Bit23	UOV	R	0	1: U 通道处于过压状态。		
Bit[22:20]					0: U 通道未处于过压状态。		
Bit[22:20] RST_SOU RCE R - 2: 外部复位。 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。 6: 启动状态; 					当前复位源状态位。		
Bit[22:20] RCE R - 3: RX 低电平复位。 4: 软复位。 其它: 保留。 Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。 0: 启动状态; 0: 启动状态;					1: 上电复位。		
Bit19 RCE 3: RX 低电平复位。 4: 软复位。 其它: 保留。 能量累加器 2 潜动状态位。 0: 启动状态;	Bit[22:20]	RST_SOU	Б		2:外部复位。		
Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。 0: 启动状态; 2		RCE	K	_	3: RX 低电平复位。		
Bit19 CRP_OUT 2 R 0 能量累加器 2 潜动状态位。 0: 启动状态; 0					4: 软复位。		
Bit19					其它:保留。		
Bit19		CDD OUT			能量累加器 2 潜动状态位。		
	Bit19	_	R	0	0: 启动状态;		
· · · · · · · · · · · · · · · · · · ·		_			1: 潜动状态		

0x74,系统物	0x74,系统状态寄存器,SYS_STS					
位		R/W	默认值	功能说明		
	CRP_OUT			能量累加器 1 潜动状态位。		
Bit18	1	R	0	0: 启动状态;		
				1: 潜动状态		
				B通道视在功率潜动状态位。		
Bit17	SBCREEP	R	-	0: 启动状态;		
				1: 潜动状态		
				B通道无功功率潜动状态位。		
Bit16	QBCREEP	R	-	0: 启动状态;		
				1: 潜动状态		
				B通道有功功率潜动状态位。		
Bit15	PBCREEP	R	-	0: 启动状态;		
				1: 潜动状态		
		R	-	A 通道视在功率潜动状态位。		
Bit14	SACREEP			0: 启动状态;		
				1: 潜动状态		
		R	-	A 通道无功功率潜动状态位。		
Bit13	QACREEP			0: 启动状态;		
				1: 潜动状态		
			-	A 通道有功功率潜动状态位。		
Bit12	PACREEP	R		0: 启动状态;		
				1: 潜动状态		
				B 通道无功功率符号位。在潜动状态时,不刷新		
Bit11 QBSI	QBSIGN	R	0	该标志位。		
				0: 正;		
				1: 负		
				B 通道有功功率符号位。在潜动状态时,不刷新		
Bit10	PBSIGN	R	0	该标志位。		
				0: 正;		
				1: 负		

Pasign R/W 数认値 功能说明 A 通道无功功率符号位。在潜动状态时,不刷新 该标志位。	0x74,系统4	0x74,系统状态寄存器,SYS_STS					
Bit9 QASIGN R 0 該标志位。	位		R/W	默认值	功能说明		
Bit9					A 通道无功功率符号位。在潜动状态时,不刷新		
D: 正:	DitO	OASION	Б	0	该标志位。		
Bit8 PASIGN R 0 A 通道有功功率符号位。在潜动状态时,不刷新 该标志位。 0: 正; 1: 负 Bit7 保留 当前 CTI 是否灌入时钟状态位。 0: 当前 CTI 是否灌入时钟正常; 1: 当前 CTI 是否灌入时钟异常 Bit6 HSEFAIL R 0 0: SRAM BIST 状态位。 0: SRAM BIST 正常; 1: SRAM BIST 错误 RAM 初始化完成状态位。 0: 未完成; 1: 已完成 相位测量是否完成状态位。 0: 未完成; 1: 已完成 1: 已完成 当前电压状态位。 当电源输入(VDD)低于 2.8V(±7%),发生掉电。	Bila	QASIGN	K	U	0: 正;		
Bit8					1: 负		
Bit8 PASIGN R 0 0: 正; 1: 负 Bit7 保留 当前 CTI 是否灌入时钟状态位。 Bit6 HSEFAIL R 0 0: 当前 CTI 是否灌入时钟状态位。 Bit5 BIST_ERR R 0 0: SRAM BIST 状态位。 Bit5 BIST_ERR R 0 0: SRAM BIST 证常; 1: SRAM BIST 错误 RAM 初始化完成状态位。 0: 未完成; 1: 己完成 相位测量是否完成状态位。 日本完成; 1: 己完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。					A 通道有功功率符号位。在潜动状态时,不刷新		
D: 正:	D:40	DACION	_		该标志位。		
Bit7 保留 Bit6 HSEFAIL R 0 0: 当前 CTI 是否灌入时钟状态位。 0: 当前 CTI 是否灌入时钟正常; 1: 当前 CTI 是否灌入时钟异常 SRAM BIST 状态位。 0: SRAM BIST 正常; 1: SRAM BIST 错误 RAM 初始化完成状态位。 0: 未完成; 1: 已完成 相位测量是否完成状态位。 0: 未完成; 1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。	Ыїв	PASIGN	K	U	0: 正;		
Bit6 HSEFAIL R 0 当前 CTI 是否灌入时钟状态位。 0: 当前 CTI 是否灌入时钟正常; 1: 当前 CTI 是否灌入时钟异常 SRAM BIST 状态位。 SRAM BIST 正常; 1: SRAM BIST 证常; 1: SRAM BIST 证常; 1: SRAM BIST 证常; 1: SRAM BIST 证常; 1: CRAM 初始化完成状态位。 0: 未完成; 1: 已完成 日前也测量是否完成状态位。 0: 未完成; 1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。					1: 负		
Bit6	Bit7	保留					
1: 当前 CTI 是否灌入时钟异常 SRAM BIST 状态位。					当前 CTI 是否灌入时钟状态位。		
Bit5 BIST_ERR R 0 0: SRAM BIST 状态位。 0: SRAM BIST 正常; 1: SRAM BIST 错误 RAM 初始化完成状态位。 0: 未完成; 1: 已完成 相位测量是否完成状态位。 0: 未完成; 1: 已完成	Bit6	HSEFAIL	R	0	0: 当前 CTI 是否灌入时钟正常;		
Bit5 BIST_ERR R 0 0: SRAM BIST 正常; 1: SRAM BIST 错误 RAM 初始化完成状态位。 0: 未完成; 1: 已完成 Bit3 PHSDONE R 0 0: 未完成; 1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。					1: 当前 CTI 是否灌入时钟异常		
Bit4 RAMINITI AL R 0 0 未完成: 1: 已完成 Bit3 PHSDONE R 0 0 未完成: 1: 已完成 Bit2 PDN R 0 0 1: 已完成 Bit2 PDN R 0 0 2.8V (±7%), 发生掉电。					SRAM BIST 状态位。		
Bit4 RAMINITI AL R 0 RAM 初始化完成状态位。 Bit3 PHSDONE R 0 相位测量是否完成状态位。 Bit2 PDN R 0 Bit2 PDN R 0 RAM 初始化完成状态位。 1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。	Bit5	Bit5 BIST_ERR	R	0	0: SRAM BIST 正常;		
Bit4 RAMINITI AL R 0 0: 未完成; 1: 已完成 Bit3 PHSDONE R 0 0: 未完成; 1: 已完成 1: 已完成 1: 已完成 2 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。					1: SRAM BIST 错误		
Bit4 AL R 0 0: 未完成; 1: 已完成 Bit3 PHSDONE R 0 0: 未完成; 1: 已完成 Bit2 PDN R 0 2.8V (±7%), 发生掉电。		DAMANUTI	R	0	RAM 初始化完成状态位。		
Bit3 PHSDONE R 0 0:未完成; 1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。	Bit4				0: 未完成;		
Bit3 PHSDONE R 0 0: 未完成; 1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。		AL			1: 已完成		
1: 已完成 当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。					相位测量是否完成状态位。		
当前电压状态位。当电源输入(VDD)低于 2.8V(±7%),发生掉电。	Bit3	PHSDONE	R	0	0: 未完成;		
Bit2 PDN R 0 2.8V (±7%), 发生掉电。					1: 已完成		
Bit2 PDN R 0					当前电压状态位。当电源输入(VDD)低于		
	D:40	DHO DDN	Б		2.8V (±7%), 发生掉电。		
	BILZ	PDN	K	U	0: VDD >= 2.8V (±7%);		
1: VDD < 2.8V (±7%)					1: VDD < 2.8V (±7%)		
ADC 的 reference 漏电状态位。					ADC 的 reference 漏电状态位。		
Bit1 REFLK R 0 0: ADC reference 电路正常	Bit1	REFLK	R	0	0: ADC reference 电路正常		
1: ADC reference 电路下降大于 2.5%					1: ADC reference 电路下降大于 2.5%		

0x74,系统状态寄存器,SYS_STS					
位		R/W	默认值 功能说明		
				校验和状态位。参与校验和计算的数据有:	
	CHECKSU	R		地址 0x0~0x7,0x25~0x3A,0x55~0x60,	
Bit0			1	0x80。	
M			0: 校验和正确;		
				1: 校验和不正确	

2.3.6 SYS_MISC 寄存器

表13. 系统配置寄存器(0x75, SYS_MISC)

0x75,系统	0x75,系统配置寄存器,SYS_MISC						
位	位		默认值	功能说明			
Bit[31:25]	保留		0	为保证系统正常工作,必须写入默认值。			
Bit[24:16]	WAVE_STORE_ CNT	R	0	波形已缓存深度记录。			
Bit[15:6]	保留		0	为保证系统正常工作,必须写入默认值。			
				RAM 自检错误时强制关闭能量累加器和 CF			
				输出。			
				0: 使能;			
				1: 关闭			
	BIST_EGY_EN		0	如果使能该功能,当发生 RAM 自检错误时会			
Bit5		R/W		强制关闭能量累加器和 CF 输出。			
ВІЮ				能量累加器和 CF 计数器控制位			
				(DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6])			
				不会发生变化。			
				虽然寄存器值没有发生改变,但是状态恢复			
				正常后,能量累加器和 CF 输出功能不会自动			
				恢复,需要用户手动开启。			
				校验和错误时强制关闭能量累加器和CF输			
			0	出。			
Bit4	CK_EGY_EN	R/W		0: 使能;			
				1: 关闭			
				如果使能该功能,当发生 RAM 校验和错误时			

位 R/W 默认值 功能说明 会强制关闭能量累加器和 CF 输出。 能量累加器和 CF 输出的位 (DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。 虽然寄存器值没有发生改变,但是状态恢复 正常后,能量累加器和 CF 输出功能不会自动 恢复,需要用户手动开启。 Bit3 PD_EGY_EN R/W 0 能量累加器和 CF 输出 的能量累加器和 CF 输出。 0.1 快能 1. 关闭 如果使能该功能,当发生掉电时会强制关闭 能量累加器和 CF 输出。 (DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。 虽然寄存器值没有发生改变,但是状态恢复 正常后,能量累加器和 CF 输出功能不会自动 恢复,需要用户手动开启。 Bit2 INTPOL R/W 0 中断引脚输出反向。 0: 中断引脚输出反向。 1. 中断引脚低电平有效,默认低电平。 1. 中断引脚低电平有效,默认高电平。 Bit1 UARTBURSTEN R/W 0 UART 连续地址写模式开关。 0.1 使能: 1. 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0. 关闭波特率自适应功能,只有第一次通信 进行波特率校正。 1. 环户单校区 进行波特率校正。 1. 环户单校区 1. 环户单位 1. 日本单位 1. 日本单位	0x75,系统配置寄存器,SYS_MISC					
能量累加器和 CF 计数器控制位	位		R/W	默认值	功能说明	
Bit3 PD_EGY_EN R/W 0 中断引脚输出反向。					会强制关闭能量累加器和 CF 输出。	
Bit3 PD_EGY_EN R/W 0 使能: 1: 关闭 如果使能该功能,当发生掉电时会强制关闭 能量累加器和 CF 输出。 0: 使能: 1: 关闭 如果使能该功能,当发生掉电时会强制关闭 能量累加器和 CF 输出。 能量累加器和 CF 输出。 6 以及生殖电时会强制关闭 6 能量累加器和 CF 输出。 6 以及生殖电时会强制关闭 6 能量累加器和 CF 输出。 6 以及生殖电时会强制关闭 6 以及生殖电台运效,以及其间的。 6 以及生殖电对力的。 6 以及生产的人工程,以是不是是一个企业的主义是一个企业的主义是是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义。但是一个企业的主义。是一个企业的主义是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义是一个企业的主义。是一个企业的主义。是一个企业的主义。是一个企业的工作,是一个企业的主义。是一个企业的工					能量累加器和 CF 计数器控制位	
田					(DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6])	
Bit3 PD_EGY_EN R/W 0 能量累加器和 CF 输出。 0: 使能; 1: 关闭 如果使能该功能,当发生掉电时会强制关闭 能量累加器和 CF 输出。 0: 使能; 1: 关闭 如果使能该功能,当发生掉电时会强制关闭 能量累加器和 CF 输出。 0: 医量累加器和 CF 输出功能不会自动 恢复,需要用户手动开启。 中断引脚输出反向。 0: 中断引脚输出反向。 0: 中断引脚低电平有效,默认低电平。 1: 中断引脚低电平有效,默认高电平。 0: 使能; 1: 关闭 理新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,以有第一次通信 进行波特率包正。 1: 开启波特率自适应功能,每一次通信进行波特率包正。 1: 开启波特率自适应功能,每一次通信进行					不会发生变化。	
Bit3 PD_EGY_EN R/W 0 排电时强制关闭能量累加器和 CF 输出。0: 使能; 1: 关闭 如果使能该功能,当发生掉电时会强制关闭 能量累加器和 CF 输出。能量累加器和 CF 输出。能量累加器和 CF 输出。据量累加器和 CF 输出。是重要不会发生变化。虽然寄存器值没有发生改变,但是状态恢复正常后,能量累加器和 CF 输出功能不会自动恢复,需要用户手动开启。中断引脚输出反向。0: 中断引脚输出反向。 Bit2 INTPOL R/W 0 0: 中断引脚隔电平有效,默认低电平。1: 中断引脚低电平有效,默认低电平。1: 中断引脚低电平有效,默认高电平。 Bit1 UARTBURSTEN R/W 0 0: 使能: 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。1: 开启波特率自适应功能,每一次通信进行。6: 关闭波特率自适应功能,每一次通信进行					虽然寄存器值没有发生改变,但是状态恢复	
Bit3 PD_EGY_EN R/W 0 掉电时强制关闭能量累加器和 CF 输出。					正常后,能量累加器和 CF 输出功能不会自动	
Bit3 PD_EGY_EN R/W 0 使能:					恢复,需要用户手动开启。	
Bit3 PD_EGY_EN R/W 0 能量累加器和 CF 输出。 能量累加器和 CF 计数器控制位。 (DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。 虽然寄存器值没有发生改变,但是状态恢复正常后,能量累加器和 CF 输出功能不会自动恢复,需要用户手动开启。 中断引脚输出反向。 Bit2 INTPOL R/W 0 0: 中断引脚输出反向。 中断引脚临电平有效,默认低电平。 1: 中断引脚低电平有效,默认低电平。 1: 中断引脚低电平有效,默认高电平。 Bit1 UARTBURSTEN R/W 0 0: 使能: 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率检正。 1: 开启波特率自适应功能,每一次通信进行					掉电时强制关闭能量累加器和 CF 输出。	
Bit3 PD_EGY_EN R/W 0 能量累加器和 CF 输出。 能量累加器和 CF 计数器控制位 (DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。 虽然寄存器值没有发生改变,但是状态恢复 正常后,能量累加器和 CF 输出功能不会自动 恢复,需要用户手动开启。 Bit2 INTPOL R/W 0 0: 中断引脚输出反向。 0: 中断引脚低电平有效,默认底电平。 1: 中断引脚低电平有效,默认高电平。 Bit1 UARTBURSTEN R/W 0 UART 连续地址写模式开关。 0: 使能: 1: 关闭 基新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信 进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					0: 使能;	
Bit3 PD_EGY_EN R/W 0 能量累加器和 CF 输出。 能量累加器和 CF 计数器控制位 (DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。 虽然寄存器值没有发生改变,但是状态恢复 正常后,能量累加器和 CF 输出功能不会自动 恢复,需要用户手动开启。 Bit2 INTPOL R/W 0 中断引脚输出反向。 0: 中断引脚低电平有效,默认低电平。 1: 中断引脚低电平有效,默认高电平。 Bit1 UARTBURSTEN R/W 0 UART 连续地址写模式开关。 0: 使能: 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信 进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					1: 关闭	
Bit3 PD_EGY_EN R/W 0 能量累加器和 CF 计数器控制位 (DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。 虽然寄存器值没有发生改变,但是状态恢复 正常后,能量累加器和 CF 输出功能不会自动 恢复,需要用户手动开启。 中断引脚输出反向。 0: 中断引脚输出反向。 0: 中断引脚低电平有效,默认低电平。 1: 中断引脚低电平有效,默认高电平。 UART 连续地址写模式开关。 0: 使能: 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信 进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					如果使能该功能,当发生掉电时会强制关闭	
Bit1 UARTBURSTEN R/W O DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6]) 不会发生变化。					能量累加器和 CF 输出。	
R/W ARTAUTOEN ARTAUTOEN R/W ARTAUTOEN ARTAUTOEN R/W ARTAUTOEN ARTAUTO	Bit3	PD_EGY_EN	R/W	0	能量累加器和 CF 计数器控制位	
Bit2 INTPOL R/W 0 中断引脚输出反向。					(DSP_CTRL1 寄存器的 Bit[15]和 Bit[7:6])	
Bit2 INTPOL R/W 0 中断引脚输出反向。					不会发生变化。	
Bit2 INTPOL R/W 0 中断引脚输出反向。					虽然寄存器值没有发生改变,但是状态恢复	
Bit2 INTPOL R/W 0 中断引脚输出反向。 0: 中断引脚高电平有效,默认低电平。 1: 中断引脚低电平有效,默认高电平。 UART 连续地址写模式开关。 0: 使能; 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					正常后,能量累加器和 CF 输出功能不会自动	
Bit2 INTPOL R/W 0 0: 中断引脚高电平有效,默认低电平。					恢复,需要用户手动开启。	
Bit1 UARTBURSTEN R/W 0 UART 连续地址写模式开关。 0: 使能; 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					中断引脚输出反向。	
Bit1 UARTBURSTEN R/W 0 UART连续地址写模式开关。 0: 使能; 1: 关闭 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行	Bit2	INTPOL	R/W	0	0: 中断引脚高电平有效,默认低电平。	
Bit1 UARTBURSTEN R/W 0 0: 使能; 1: 关闭 Bit0 UARTAUTOEN R/W 0 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					1: 中断引脚低电平有效,默认高电平。	
Bit0 UARTAUTOEN R/W 0 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					UART 连续地址写模式开关。	
Bit0 UARTAUTOEN R/W 0 重新使能 UART 波特率自适应功能,这个 Bit 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行	Bit1	UARTBURSTEN	R/W	0	0: 使能;	
Bit0 UARTAUTOEN R/W 0 建议在更换系统时钟之前置 1。 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 进行波特率检正。 1: 开启波特率自适应功能,每一次通信进行					1. 关闭	
BitO UARTAUTOEN R/W 0 0: 关闭波特率自适应功能,只有第一次通信进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					重新使能 UART 波特率自适应功能,这个 Bit	
BitO UARTAUTOEN R/W 0 进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行					建议在更换系统时钟之前置 1。	
进行波特率校正。 1: 开启波特率自适应功能,每一次通信进行	Rit∩	tO UARTAUTOFN	R/W	0	0: 关闭波特率自适应功能,只有第一次通信	
	Dito	CARTAGIOLIN		3	进行波特率校正。	
가마다 그는 사					1: 开启波特率自适应功能,每一次通信进行	
					波特率校正。	

2.3.7 SYS_BLKX_ADDR 寄存器

表14. 块读地址寄存器 0(0x79,SYS_BLK0_ADDR)

0x79,块词	0x79,块读地址寄存器 0,SYS_BLK0_ADDR						
位		R/W	默认值	功能说明			
Bit[31:24]	ADDR3	R/W	0	块读地址 3			
Bit[23:16]	ADDR2	R/W	0	块读地址 2			
Bit[15:8]	ADDR1	R/W	0	块读地址 1			
Bit[7:0]	ADDR0	R/W	0	块读地址 0			

表15. 块读地址寄存器 1(0x7A, SYS_BLK1_ADDR)

0x7A,块词	0x7A,块读地址寄存器 1,SYS_BLK1_ADDR						
位		R/W	默认值	功能说明			
Bit[31:24]	ADDR7	R/W	0	块读地址 7			
Bit[23:16]	ADDR6	R/W	0	块读地址 6			
Bit[15:8]	ADDR5	R/W	0	块读地址 5			
Bit[7:0]	ADDR4	R/W	0	块读地址 4			

表16. 块读地址寄存器 2(0x7B,SYS_BLK2_ADDR)

0x7B,块设	0x7B,块读地址寄存器 2,SYS_BLK2_ADDR						
位		R/W	默认值	功能说明			
Bit[31:24]	ADDR1	R/W	0	块读地址 11			
Bit[23:16]	ADDR1 0	R/W	0	块读地址 10			
Bit[15:8]	ADDR9	R/W	0	块读地址 9			
Bit[7:0]	ADDR8	R/W	0	块读地址 8			

表17. 块读地址寄存器 3(0x7C,SYS_BLK3_ADDR)

0x7C,块设	0x7C,块读地址寄存器 3,SYS_BLK3_ADDR					
位		R/W	默认值	功能说明		
Bit[31:24]	ADDR1 5	R/W	0	块读地址 15		
Bit[23:16]	ADDR1	R/W	0	块读地址 14		

0x7C,块设	0x7C,块读地址寄存器 3,SYS_BLK3_ADDR					
位		R/W	默认值	功能说明		
	4					
Bit[15:8]	ADDR1	R/W	0	块读地址 13		
Bit[7:0]	ADDR1 2	R/W	0	块读地址 12		

2.3.8 SYS_IOCFGX 寄存器

表18. IO 配置寄存器 0(0x7D,SYS_IOCFG0)

0x7D, IO	0x7D,IO 配置寄存器 0,SYS_IOCFG0						
位		R/W	默认值	功能说明			
Bit[31:24]	P3CFG	R/W	0	配置同 P0CFG			
Bit[23:16]	P2CFG	R/W	0	配置同 P0CFG			
Bit[15:8]	P1CFG	R/W	0	配置同 P0CFG			
Bit[7:0]	POCFG	R/W	0	Bit7~Bit6: 00: 如下表所示,Bit5~Bit0 可配置为不同组合中断 10: CF1 输出,Bit5~Bit0 可配置任意值 01: CF2 输出,Bit5~Bit0 可配置任意值 11: 主动能量累加数据上传,Bit5~Bit0 可配置任意值			

表19. POCFG Bit5~Bit0 说明

Bit5~Bit3	Bit2~Bit0	功能
0	0	高阻态
0	1	电流过零点中断
0	2	电压过零点中断
0	3	电流过零点输出方波
0	4	电压过零点输出方波
0	5	高速能量累加器 1 溢出中断
0	6	高速能量累加器 2 溢出中断
0	7	1 类中断
1	0	波形刷新中断
1	1	瞬时有效值刷新中断
1	2	平均有效值刷新中断

1	3	瞬时功率刷新中断
1	4	平均功率刷新中断
1	5	波形缓存完成中断
1	6	波形缓存地址溢出中断
1	7	主动波形数据上传完成中断
2	0	电流 IB 通道欠流中断
2	1	电流 IB 通道过流中断
2	2	电流 IA 通道欠流中断
2	3	电流 IA 通道过流中断
2	4	电压通道欠压中断
2	5	电压通道过压中断
2	6	电压骤降中断
2	7	电压骤升中断
3	0	Reference 错误中断
3	1	CTI 外灌时钟缺失中断
3	2	SPI 通信错误中断
3	3	UART 通信错误中断
3	4	掉电中断
3	5	参数自检错误中断
3	6	相位测试完成中断
3	7	RAM 自检错误中断
4	0	1 类中断
4	1	2 类中断
4	2	3 类中断
4	其他	4 类中断
5	0	3 类中断
5	1	1 类中断和 2 类中断
5	2	1 类中断和 3 类中断
5	3	1 类中断和 4 类中断
5	4	2 类中断和 3 类中断
5	5	2类中断和4类中断
5	6	3类中断和4类中断
5	7	所有中断
6	0	1 类中断、2 类中断和 3 类中断
-	1	1

6	1	1 类中断、2 类中断和 4 类中断
6	2	1 类中断、3 类中断和 4 类中断
6	3	2 类中断、3 类中断和 4 类中断
6	其他	所有中断
7	1	波形主动上传 SPI 片选 SPIMAS_SPCSN
7	2	波形主动上传 SPI 时钟 SPIMAS_SPCK
7	4	波形主动上传 SPI 数据 SPIMAS_SPDO
7	其他	禁止输出

其中, IO 口在不配置时(即全 0),输出高阻。

- 1 类中断: 电流过零点中断、电压过零点中断、高速能量累加器 1/2 溢出中断。
- 2 类中断:波形刷新中断、瞬时有效值刷新中断、平均有效值刷新中断、瞬时功率值刷新中断、平均功率值刷新中断、波形缓存完成中断、波形缓存溢出中断、主动波形数据上传完成中断。
- 3 类中断: 电流 IB 通道欠流中断、电流 IB 通道过流中断、电流 IA 通道欠流中断、电流 IA 通道过流中断、电压通道欠压中断、电压通道过压中断、电压骤降中断、电压骤升中断、电压骤降结束中断、电压骤升结束中断。
- 4 类中断: SPI 通信错误中断、UART 通信错误中断、参数自检错误中断、相位测量完成中断、掉电中断、Reference 错误中断、CTI 外灌时钟缺失中断、RAM 自检错误中断。

表20. IO 配置寄存器 1(0x7E,SYS_IOCFG1)

0x7E,IO 配置寄存器 1,SYS_IOCFG1						
位 R/W 默认值		默认值	功能说明			
Bit[31:24]	保留		0	为保证系统正常工作,必须写入默认值。		
Bit[23:16]	P6CFG	R/W	0	配置同 P0CFG		
Bit[15:8]	P5CFG	R/W	0	配置同 P0CFG		
Bit[7:0]	P4CFG	R/W	0	配置同 P0CFG		

2.3.9 SYS_VERSION 寄存器

表21. 版本信息寄存器(0x7F, SYS_VERSION)

0x7F,版本信息寄存器,SYS_VERSION						
位 R/W 默认值			默认值	功能说明		
Bit[31:0]	VERSIO N	R	-	当前硬件版本号		

2.4 计量控制寄存器

发生片外输入 RSTN 复位、RX 复位或软件复位时,所有计量控制寄存器均会被复位为默认值。下表中的"默认值"均为十六进制数值。

所有的计量控制寄存器均需要参与参数配置自检校验。

2.4.1 DSP_CTRL0 寄存器

表22. 计量控制寄存器 0 (0x02, DSP_CTRL0)

0x02,计量控制寄存器 0,DSP_CTRL0					
位	位		默认值	功能说明	
				瞬时功率值、有效值刷新时间加倍(具体时	
				间与系统时钟的准确度有关)。	
Bit31	CURDAT_RATE	R/W	0	0: 瞬时功率值刷新时间 20ms, 瞬时有效值	
Dito	CONDAI_NATE	IX/VV	U	刷新时间 10ms。	
				1: 瞬时功率值刷新时间 40ms,瞬时有效值	
				刷新时间 20ms。	
Bit30	保留		0	为保证系统正常工作,必须写入默认值。	
				DSP_DAT_FRQ 寄存器值来源(具体时间	
			0	与系统时钟的准确度有关)。	
				00: 16 个周波的电网频率测试值的累加值	
		R/W		(默认是 320ms 刷新)。	
Bit[29:28]	FRQ_SEL			01:1个周波的电网频率测试值(默认是	
				20ms 刷新)。	
				10: 64 个周波的电网频率测试值的累加值	
				(默认是 1280ms 刷新)。	
				11: 保留。	
				直流计量模式开关。	
Bit27	DC_METER_MODE	R/W	0	0: 关闭;	
				1: 打开	
Bit[26:25]	-	-	0	为保证系统正常工作,必须写入默认值。	
				视在功率计算源选择。	
Bit24	S_MODE	R/W	0	0: 通过有效值计算;	
				1: 通过功率值计算	
Bit[23:20]	CFG_CHANNEL	R/W	0	可配置基波通道选择。	

				0:通道1,基波有功A;通道2,基波有功
				В。
				1:通道 1,基波有功 A;通道 2,基波电压
				有效值。
				2: 通道 1, 基波有功 A; 通道 2, 基波电流
				A有效值。
				3: 通道 1, 基波有功 A; 通道 2, 基波电流
				B有效值。
				4: 通道 1,基波有功 B;通道 2,基波电压
				有效值。
				5: 通道 1, 基波有功 B; 通道 2, 基波电流
				A 有效值。
				6: 通道 1, 基波有功 B; 通道 2, 基波电流
				B有效值。
				7: 通道 1,基波电压有效值;通道 2,基波
				电流 A 有效值。
				8: 通道 1, 基波电压有效值; 通道 2, 基波
				电流 B 有效值。
				9:通道 1,基波电流 A 有效值;通道 2,
				基波电流 B 有效值。
				10~15: 与配置 0 保持一致。
				无功功率 B 模式选择。
Bit19	QB_MODE	R/W	0	0: 全波无功;
				1: 基波无功
				无功功率 A 模式选择。
Bit18	QA_MODE	R/W	0	0: 全波无功;
				1: 基波无功
				计算全波功率的数据是否经过高通滤波器。
				0: 经过;
Bit17	DO HDESEL	R/W		1: 不经过
DILIT	it17 PQ_HPFSEL	FK/VV	0	当罗氏线圈采样开关开启的情况下,
				DSP_CTRL0 的 Bit[17:13]必须为相同值,
				否则罗氏线圈采样无效
Bit16	ELIND HDESEL	R/W	0	计算基波的数据是否经过高通滤波器。
DILIO	FUND_HPFSEL	FX/VV	0	0: 经过;
	1	I	<u> </u>	

				1: 不经过
				 当罗氏线圈采样开关开启的情况下,
				 DSP_CTRL0 的 Bit[17:13]必须为相同值,
				计算全波电压有效值的数据是否经过高通滤
				波器。
				0: 经过;
Bit15	RMSU_HPFSEL	R/W	0	1: 不经过
				当罗氏线圈采样开关开启的情况下,
				DSP_CTRL0 的 Bit[17:13]必须为相同值,
				否则罗氏线圈采样无效
				计算全波电流 IA 有效值的数据是否经过高
				通滤波器。
				0: 经过;
Bit14	RMSIA_HPFSEL	R/W	0	1: 不经过
				当罗氏线圈采样开关开启的情况下,
				DSP_CTRL0 的 Bit[17:13]必须为相同值,
				否则罗氏线圈采样无效
				计算全波电流 IB 有效值的数据是否经过高
				通滤波器。
				0: 经过;
Bit13	RMSIB_HPFSEL	R/W	0	1: 不经过
				当罗氏线圈采样开关开启的情况下,
				DSP_CTRL0 的 Bit[17:13]必须为相同值,
				否则罗氏线圈采样无效
				计量数据响应时间。
Bit12	RESPONSE_TIME	R/W	0	0: 正常;
				1: 2 倍速
				平均有效值刷新时间(具体时间与系统时钟
				的准确度有关)。
Bit[11:10]	AVGRMS_RATE	R/W	0	00: 40ms;
	_			01: 80ms;
				10: 320ms;
				11: 640ms
Bit[9:8]	AVGPQ_RATE	R/W	0	平均功率刷新时间(具体时间与系统时钟的

				业
				准确度有关)。
				00: 80ms;
				01: 160ms;
				10: 320ms;
				11: 640ms
				DSP 工作模式。
				0: 系统时钟 6.5536MHz, DSP 每周波采样
				点数 128。
				1: 系统时钟 6.5536MHz, DSP 每周波采样
				点数 64。
				2: 系统时钟 6.5536MHz, DSP 每周波采样
				点数 32。
				3, 4, 5: 保留
				6: 系统时钟 3.2768MHz, DSP 每周波采样
Bit[7:4]	DSP_MODE	R/W	0	点数 64。
				7: 系统时钟 3.2768MHz, DSP 每周波采样
				点数 32。
				8: 系统时钟 819.2KHz, DSP 每周波采样
				点数 32。(此时仅支持有效值计算,可通过
				DSP_CTRL6 寄存器选择有效值计算通路)
				9: 系统时钟 409.6KHz, DSP 每周波采样
				点数 16。(此时仅支持有效值计算,可通过
				DSP_CTRL6 寄存器选择有效值计算通路)
Bit3	-		0	保留
Bit2	ADCUEN	R/W	0	电压通道开关(包括 ADC 和 DSP)。
Bit1	ADCIBEN	R/W	0	电流 B 通道开关(包括 ADC 和 DSP)。
Bit0	ADCIAEN	R/W	0	电流 A 通道开关(包括 ADC 和 DSP)。
				·

2.4.2 DSP_CTRL1 寄存器

表23. 计量控制寄存器 1 (0x03, DSP_CTRL1)

0x03,R/W,计量控制寄存器 1,DSP_CTRL1						
位	位 R/W 默认值 功能说明					
Bit31	BW_COMP	R/W	0	滤波器自动增益补偿。		

0x03, R/V	0x03,R/W,计量控制寄存器 1,DSP_CTRL1					
位		R/W	默认值	功能说明		
				该功能默认打开,该控制位不影响直流计量,		
				直流计量时自动关闭。		
				0: 打开;		
				1: 关闭		
Bit[30:24]	保留		0	为保证系统正常工作,必须写入默认值。		
				能量累加器时钟选择位。时钟切换需要稳定时		
D:400	FOY OLK OF	D/\/		间,约为 107µs,请在稳定前关闭 CF。		
Bit23	EGY_CLK_SEL	R/W	0	0: 204.8KHz;		
				1: 32768Hz		
				累加周期与系统时钟的准确度有关。		
				0: 关闭。		
			0	当 DSP_CTRL0 的 Bit31 配 0,能量累加器 3,		
	LCF ACC			4,5,6,7,8累加周期为20ms;		
		R/W		当 DSP_CTRL0 的 Bit31 配 1,能量累加器 3,		
				4,5,6,7,8 累加周期为 40ms。		
Bit22				1: 打开。		
	_			当 DSP_CTRL0 的 Bit31 配 0,能量累加器 3,		
				4,5累加周期为 10ms,能量累加器 6,7,8		
				不累加;		
				当 DSP_CTRL0 的 Bit31 配 1,能量累加器 3,		
				4,5累加周期为 20ms,能量累加器 6,7,8		
				不累加。		
				电压通道数字 PGA:		
Bit21	PGA_U	R/W	0	0: X1;		
	_			1: X4		
				电流过零点输入源选择:		
Bit20	PHSI_SEL	R/W	0	0: 电流 IA 通道;		
	_			1: 电流 IB 通道		
				过零点事件检测方式选择。		
		R/W		0: 负向过零点(信号从正信号变成负信号认为		
Bit[19:18]	SIGN_SEL		0	发生一次过零点事件)。		
				1: 正向过零点(信号从负信号变成正信号认为		

0x03, R/V	0x03,R/W,计量控制寄存器 1,DSP_CTRL1				
位		R/W	默认值	功能说明	
				发生一次过零点事件)。	
				2: 正向和负向过零点。	
				3: 关闭过零点检测功能。	
				主动能量累加数据上传,主动数据上传接口可	
				通过 SYS_IOCFGX 寄存器将	
				P0/P1/P2/P3/P4/P5/P6 引脚配置为主动能量累	
				加数据上传口。使用 UART 通讯方式,该	
Bit17	AUTO_BAUD	R/W	0	UART 的波特率设置如下所示:	
				0: UART 通讯时,波特率和上一次串口通信波	
				特率一致; SPI 通讯时,波特率为 4800。	
				1: UART 通讯时,波特率是上一次串口通信波	
				特率的一倍; SPI 通讯时,波特率为 9600。	
				主动能量累加数据上传使能。	
Bit16	AUTO_TX_EN	R/W	0	0: 禁止;	
				1. 使能	
				低速能量累加器和 CF 计数器开关。低速能量	
Bit15	EGY_LC_EN	R/W	0	累加器累加速度为 50Hz。	
Bit 10	LOT_LO_LIV	R/VV	U	0: 关闭;	
				1: 开启	
				CF2 极性控制位。	
Bit14	CF2_INV	R/W	0	0: 原始极性;	
				1: 反向极性	
				CF2 输出使能位。	
Bit13	CF2_EN	R/W	0	0: 关闭;	
				1: 开启	
				CF2 的输入源选择	
Bit12	CF2_SEL	R/W	0	0:来源于能量累加器 1。	
				1:来源于能量累加器 2。	
Bit11	保留		0	为保证系统正常工作,必须写入默认值。	
				CF1 极性控制位。	
Bit10	CF1_INV	R/W	0	0: 原始极性。	
				1: 反向极性。	

0x03, R/V	0x03,R/W,计量控制寄存器 1,DSP_CTRL1				
位		R/W	默认值	功能说明	
				CF1 输出使能位。	
Bit9	CF1_EN	R/W	0	0: 关闭;	
				1: 开启	
				CF1 的输入源选择	
Bit8	CF1_SEL	R/W	0	0:来源于能量累加器 1。	
				1:来源于能量累加器 2。	
				能量累加器 2 的能量累加器和 CF 计数器 2 开	
Bit7	CALCEN2	R/W	0	关。能量累加器 2 的累加速度 204.8KHz。	
Dit	CALCENZ	IX/VV	U	0: 关闭;	
				1: 开启	
				能量累加器 1 的能量累加器和 CF 计数器 1 开	
Bit6	CALCEN1	R/W	0	关。能量累加器 1 的累加速度 204.8KHz。	
Dito	CALCENT	R/VV	U	0: 关闭;	
				1: 开启	
			0	CF 脉冲宽度选择(具体时间与系统时钟的准确	
				度有关)。	
Bit[5:4]	CF_PULSE	R/W		0: 80ms;	
Bit[o. 1]	0 0.00	1000		1: 40ms;	
				2: 20ms;	
				3: 10ms	
			0	CF 脉冲加速产生。	
				0: 正常;	
Bit[3:2]	CF_FAST_EN	R/W		1: 4 倍速;	
				2: 8 倍速;	
				3: 16 倍速	
				功率潜动判断,潜动判断采用连续3次平均值	
				与阈值比较,低于下限阈值,则认为此时处于	
Bit1	PWR_CRP_EN	R/W	0	潜动状态。	
			1	0: 关闭潜动判断;	
				1: 使能潜动判断	
Bit0	CRP_EN	R/W	0	高速能量累加器防潜开关。	
				0: 关闭潜动判断;	

0x03,R/W,计量控制寄存器 1,DSP_CTRL1				
位		R/W	默认值	功能说明
				1: 使能潜动判断

2.4.3 DSP_CTRL2 寄存器

表24. 计量控制寄存器 2 (0x04, DSP_CTRL2)

0x04, R/V	0x04,R/W,计量控制寄存器 2,DSP_CTRL2				
位		R/W	默认值	功能说明	
				能量累加器 4 累加模式。	
				0: 功率累加。	
Bit[31:30]	INMODE4	R/W	0	1: 电流有效值累加。	
				2: 常数累加。	
				3: 可配置基波通道累加。	
				能量累加器 4 A 通道累加开关。	
Bit29	A_SEL4	R/W	0	0: 关闭;	
				1: 打开	
				能量累加器 4 B 通道累加开关。	
Bit28	B_SEL4	R/W	0	0: 关闭;	
				1: 打开	
				能量累加器 4 多通道累加模式下,累加源选择。	
				功率累加时:	
				0、3: 有功功率累加。	
Bit[27:26]	TYPE_SEL4	R/W	0	1: 无功功率累加。	
				2: 视在功率累加。	
				有效值累加时:	
				高位为0表示累加和,高位为1表示累加差。	
				对于每一个送入能量累加器 4 累加的信号的种类	
				选择。	
				0: 能量累加器只累加正数。	
Bit[25:24]	PROCMODE4	R/W	0	1: 能量累加器只累加负数(此时,实际累加值	
				为原始值转换的正数)。	
				2: 能量累加器累加原始值。	
				3: 能量累加器累加绝对值	

0x04, R/V	0x04,R/W,计量控制寄存器 2,DSP_CTRL2			
位 R/W 默认值		默认值	功能说明	
				能量累加器 3 累加模式。
				0: 功率累加。
Bit[23:22]	INMODE3	R/W	0	1: 电流有效值累加。
				2: 常数累加。
				3: 可配置基波通道累加。
				能量累加器 3 A 通道累加开关。
Bit21	A_SEL3	R/W	0	0: 关闭;
				1: 打开
				能量累加器 3 B 通道累加开关。
Bit20	B_SEL3	R/W	0	0: 关闭;
				1: 打开
				能量累加器 3 多通道累加模式下,累加源选择。
				功率累加时:
				0/3: 有功功率累加。
Bit[19:18]	TYPE_SEL3	R/W	0	1: 无功功率累加。
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 3 累加的信号的种类
				选择。
				0: 能量累加器只累加正数。
Bit[17:16]	PROCMODE3	R/W	0	1: 能量累加器只累加负数(此时,实际累加值
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。
				能量累加器 2 累加模式。
Bit[15:14] I				0: 功率累加。
	INMODE2	R/W	0	1: 电流有效值累加。
				2: 常数累加。
				3: 可配置基波通道累加。
Bit13	A SEL2	R/W	0	能量累加器 2 A 通道累加开关。
Dicio	A_OLLZ	17///		0: 关闭;

0x04,R/W,计量控制寄存器 2,DSP_CTRL2				
位		R/W	默认值	功能说明
				1: 打开
				能量累加器 2 B 通道累加开关。
Bit12	B_SEL2	R/W	0	0: 关闭;
				1: 打开
				能量累加器 2 多通道累加模式下,累加源选择。
				功率累加时:
				0/3: 有功功率累加。
Bit[11:10]	TYPE_SEL2	R/W	0	1: 无功功率累加。
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 2 累加的信号的种类
				选择。
				0: 能量累加器只累加正数。
Bit[9:8]	PROCMODE2	R/W	0	1: 能量累加器只累加负数(此时,实际累加值
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。
				能量累加器 1 累加模式。
				0: 功率累加。
Bit[7:6]	INMODE1	R/W	0	1: 电流有效值累加。
				2: 常数累加。
				3: 可配置基波通道累加。
				能量累加器 1 A 通道累加开关。
Bit5	A_SEL1	R/W	0	0: 关闭;
				1: 打开
				能量累加器 1 B 通道累加开关。
Bit4	B_SEL1	R/W	0	0: 关闭;
				1: 打开
				能量累加器 1 多通道累加模式下,累加源选择。
Bit[3:2]	TYPE_SEL1	R/W	0	功率累加时:
				0/3: 有功功率累加。

0x04,R/W,计量控制寄存器 2,DSP_CTRL2				
位		R/W	W 默认值 功能说明	
				1: 无功功率累加。
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 1 累加的信号的种类
				选择。
				0: 能量累加器只累加正数。
Bit[1:0]	PROCMODE1	R/W	0	1: 能量累加器只累加负数(此时,实际累加值
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。

2.4.4 DSP_CTRL3 寄存器

表25. 计量控制寄存器 3 (0x05, DSP_CTRL3)

0x05, R/V	0x05,R/W,计量控制寄存器 3,DSP_CTRL3				
位		R/W	默认值	功能说明	
				能量累加器 8 累加模式。	
				0: 功率累加。	
Bit[31:30]	INMODE8	R/W	0	1: 电流有效值累加。	
				2: 常数累加。	
				3: 可配置基波通道累加。	
	Bit29 A_SEL8 R/		R/W 0	能量累加器 8 A 通道累加开关。	
Bit29		R/W		0: 关闭;	
				1: 打开	
				能量累加器 8 B 通道累加开关。	
Bit28	B_SEL8	R/W	0	0: 关闭;	
				1: 打开	
				能量累加器8多通道累加模式下,累加源选择。	
Bit[27:26]	TYPE_SEL8	R/W	0	功率累加时:	
				0/3: 有功功率累加。	
				1: 无功功率累加。	

0x05, R/V	0x05,R/W,计量控制寄存器 3,DSP_CTRL3			
位		R/W	默认值	功能说明
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 8 累加的信号的种类
				选择。
				0: 能量累加器只累加正数。
Bit[25:24]	PROCMODE8	R/W	0	1: 能量累加器只累加负数(此时,实际累加值
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。
				能量累加器 7 累加模式。
				0: 功率累加。
Bit[23:22]	INMODE7	R/W	0	1: 电流有效值累加。
				2: 常数累加。
				3: 可配置基波通道累加。
				能量累加器 7 A 通道累加开关。
Bit21	A_SEL7	R/W	0	0: 关闭;
				1: 打开
				能量累加器 7 B 通道累加开关。
Bit20	B_SEL7	R/W	0	0: 关闭;
				1: 打开。
				能量累加器 7 多通道累加模式下,累加源选择。
				功率累加时:
				0/3: 有功功率累加。
Bit[19:18]	TYPE_SEL7	R/W	0	1:无功功率累加。
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 7 累加的信号的种类
Bit[17:16]	PROCMODE7	R/W	0	选择。
טון 17.10]	FROCIVIODE/	LV VV	U	0: 能量累加器只累加正数。
				1: 能量累加器只累加负数(此时,实际累加值
L	1		<u> </u>	

0x05, R/V	0x05,R/W,计量控制寄存器 3,DSP_CTRL3			
位		R/W	默认值	功能说明
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。
				能量累加器 6 累加模式。
				0: 功率累加。
Bit[15:14]	INMODE6	R/W	0	1: 电流有效值累加。
				2: 常数累加。
				3: 可配置基波通道累加。
				能量累加器 6 A 通道累加开关。
Bit13	A_SEL6	R/W	0	0: 关闭;
				1: 打开
	Bit12 B_SEL6	R/W		能量累加器 6 B 通道累加开关。
Bit12			0	0: 关闭;
				1. 打开
		R/W		能量累加器 6 多通道累加模式下,累加源选择。
				功率累加时:
				0/3: 有功功率累加。
Bit[11:10]	TYPE_SEL6		0	1: 无功功率累加。
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 6 累加的信号的种类
				选择。
				0: 能量累加器只累加正数。
Bit[9:8]	PROCMODE6	R/W	0	1: 能量累加器只累加负数(此时,实际累加值
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。
				能量累加器 5 累加模式。
Bit[7:6]	INMODE5	R/W	0	0: 功率累加。
Dit[1.0]	I TINIODEO	K/VV		1: 电流有效值累加。
				2: 常数累加。

0x05, R/V	0x05,R/W,计量控制寄存器 3,DSP_CTRL3			
位		R/W	默认值	功能说明
				3: 可配置基波通道累加。
				能量累加器 5 A 通道累加开关。
Bit5	A_SEL5	R/W	0	0: 关闭;
				1: 打开
				能量累加器 5 B 通道累加开关。
Bit4	B_SEL5	R/W	0	0: 关闭;
				1: 打开
				能量累加器 5 多通道累加模式下,累加源选择。
				功率累加时:
				0/3: 有功功率累加。
Bit[3:2]	TYPE_SEL5	R/W	0	1: 无功功率累加。
				2: 视在功率累加。
				有效值累加时:
				高位为0表示累加和,高位为1表示累加差。
				对于每一个送入能量累加器 5 累加的信号的种类
				选择。
				0: 能量累加器只累加正数。
Bit[1:0]	PROCMODE5	R/W	0	1: 能量累加器只累加负数(此时,实际累加值
				为原始值转换的正数)。
				2: 能量累加器累加原始值。
				3: 能量累加器累加绝对值。

2.4.5 DSP_CTRL4 寄存器

表26. 计量控制寄存器 4 (0x06, DSP_CTRL4)

0x06, R/V	0x06,R/W,计量控制寄存器 4,DSP_CTRL4					
位	位		默认值	功能说明		
Bit[31:30]	IPERIOD	R/W	0	过流或欠流检测时间长度选择。当某个半周波内的采样点数中发生过流或欠流的采样点数大于等于 ITH 值,则认为这个半周波是有效半周波。如果连续有效半周波数量达到 IPERIOD 设定的值,则认为事件发生。 0: 半个周波。 1: 1个周波。 2: 2个周波。 3: 4个周波。		
Bit[29:24]	ITH	R/W	0	半周波判断为有效半周波的阈值。 0: 1 个采样点。 1: 2 个采样点。 63: 64 个采样点。		
Bit[23:22]	UPERIOD	R/W	0	配置情况与 IPERIOD 一致。 0: 半个周波。 1: 1个周波。 2: 2个周波。 3: 4个周波。		
Bit[21:16]	UTH	R/W	0	配置情况与ITH一致。 0: 1个采样点。 1: 2个采样点。 63: 64个采样点。		
Bit[15:10]	保留		0	为保证系统正常工作,必须写入默认值。		
Bit9	IBLCSEL	R/W	0	IB 欠流检测源是否经过高通滤波器。0: 不经过;1: 经过		
Bit8	IBOCSEL	R/W	0	IB 过流检测源是否经过高通滤波器。0: 不经过;1: 经过		

0x06,R/W,计量控制寄存器 4,DSP_CTRL4					
位		R/W	默认值	功能说明	
				IA 欠流检测源是否经过高通滤波器。	
Bit7	IALCSEL	R/W	0	0: 不经过;	
				1: 经过	
				IA 过流检测源是否经过高通滤波器。	
Bit6	IAOCSEL	R/W	0	0: 不经过;	
				1: 经过	
				U通道欠压检测源是否经过高通滤波器。	
Bit5	ULVSEL	R/W	0	0: 不经过;	
				1: 经过	
				U通道过压检测源是否经过高通滤波器。	
Bit4	UOVSEL	R/W	0	0: 不经过;	
				1: 经过	
Bit3	保留		0	为保证系统正常工作,必须写入默认值。	
				IB 过流欠流检测的开关。	
Bit2	FDIBEN	R/W	0	0: 关闭;	
				1: 开启	
				IA 过流欠流检测的开关。	
Bit1	FDIAEN	R/W	0	0: 关闭;	
				1: 开启	
				U通道过压欠压检测的开关。	
Bit0	FDUEN	R/W	0	0: 关闭;	
				1: 开启	

2.4.6 DSP_CTRL5 寄存器

表27. 计量控制寄存器 5 (0x07, DSP_CTRL5)

0x07,R/W,计量控制寄存器 5,DSP_CTRL5						
位 R/W 默认值				功能说明		
Bit31	WAVE_ADDR_CLR	R/W	0	复位读取波形缓存时的地址,写 1 复位。		
Bit[30:29]	WAVE_MDSP_MODE	R/W	0	波形缓存工作模式: 0: 手动开始存,存满停,此时为单		

R/W 默认値 功能说明 次存储。	0x07, R/W,	计量控制寄存器 5,DSP	_CTRL	.5	
Bit28 WAVE_MEM_EN R/W 0 1: 手动开始存,事件触发序或手动停,此时为值坏存储。	位		R/W	默认值	功能说明
Bit28 WAVE_MEM_EN R/W 0 被形缓存性能。被形缓存性能。被形缓存工作模式为 0 时,写 1 使能一次波形缓存,立即开始存波形,写 0 无效果。被形缓存工作模式为 1 时,写 1 使能一次波形缓存,立即开始存波形,写 0 波形缓存立即停止存波形,写 0 波形缓存工作模式为 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。 Bit27 U_DIP_TRIG R/W 0 被形缓存和上传电压骤降事件触发开关。0: 关闭: 1: 打开被形缓存和上传电压骤升事件触发开关。0: 关闭: 1: 打开被形缓存和上传电压骤升事件触发开关。0: 关闭: 1: 打开被形缓存和上传。IB 欠流事件触发开关。1: 打开被形缓存和上传。IB 欠流事件触发开关。1: 打开被形缓存和上传。IB 欠流事件触发开关。0: 关闭: 1: 打开 Bit24 IB_OC_TRIG R/W 0 关。0: 关闭: 1: 打开 Bit24 IB_OC_TRIG R/W 0 关。0: 关闭: 1: 打开					次存储。
Bit28 WAVE_MEM_EN R/W 0 被形缓存使能。被形缓存工作模式为 0 时,写 1 使能一次波形缓存,立即开始存被形,写 0 无效果。被形缓存立即停止存波形,写 0 被形缓存立即停止存波形,写 0 被形缓存立即停止存波形。被形缓存立即停止存波形。该形缓存工作模式为 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。 Bit27 U_DIP_TRIG R/W 0 被形缓存和上传电压骤降事件触发开关。0: 关闭: 1: 打开 被形缓存和上传电压骤升事件触发开关。0: 关闭: 1: 打开 被形缓存和上传 IB 欠流事件触发开关。0: 关闭: 1: 打开 被形缓存和上传 IB 欠流事件触发开关。0: 关闭: 1: 打开 Bit25 IB_LC_TRIG R/W 0 证 关闭: 1: 打开 被形缓存和上传 IB 过流事件触发开关。0: 关闭: 1: 打开 Bit24 IB_OC_TRIG R/W 0 关。0: 关闭: 1: 打开					1: 手动开始存,事件触发停或手动
Bit28 WAVE_MEM_EN R/W 0 被形缓存性能。被形缓存工作模式为 0 时,写 1 使能一次波形缓存,立即开始存波形,写 0 无效果。 波形缓存工作模式为 1 时,写 1 使能一次波形缓存,立即开始存波形,写 0 波形缓存工作模式为 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。 被形缓存和上传电压骤降事件触发开关。 0: 关闭: 1: 打开 波形缓存和上传电压骤升事件触发开关。 0: 关闭: 1: 打开 波形缓存和上传电压骤升事件触发开关。 0: 关闭: 1: 打开 被形缓存和上传 IB 欠流事件触发开关。 0: 关闭: 1: 打开 Bit24 IB_OC_TRIG R/W 0 关闭: 1: 打开 被形缓存和上传 IB 过流事件触发开关。 0: 关闭: 1: 打开 被形缓存和上传 IB 过流事件触发开关。 0: 关闭: 1: 打开					停,此时为循环存储。
Bit28					2: 事件触发开始存,存满停,此时
Bit28 WAVE_MEM_EN R/W 0 波形缓存工作模式为 0 时,写 1 使能					为单次存储。
Bit28 WAVE_MEM_EN R/W 0 波形缓存工作模式为 0 时,写 1 使能一次波形缓存,立即开始存波形,写 0 无效果。 波形缓存立即停止存波形,写 0 波形缓存立即停止存波形,写 0 波形缓存立即停止存波形,写 0 波形缓存 1 作模式为 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。					3: 不开启。
Bit28 WAVE_MEM_EN R/W 0 一次波形缓存,立即开始存波形,写 0 无效果。 波形缓存立即停止存波形。 波形缓存立即停止存波形。 波形缓存 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。 Bit27 U_DIP_TRIG R/W 0 波形缓存和上传电压骤降事件触发开关。 Bit26 U_SWELL_TRIG R/W 0 次形缓存和上传电压骤升事件触发开关。 Bit25 IB_LC_TRIG R/W 0 关闭: Bit25 IB_LC_TRIG R/W 0 关闭: Bit24 IB_OC_TRIG R/W 0 关闭:					波形缓存使能。
Bit28 WAVE_MEM_EN R/W 0 0 无效果。 波形缓存工作模式为 1 时,写 1 使能 一次波形缓存,立即开始存被形,写 0 波形缓存立即停止存波形。 波形缓存工作模式为 2 时,写 1 使能 一次波形缓存,等待事件触发后开启 存数据,写 0 无效果。 Bit27 U_DIP_TRIG R/W 0 波形缓存和上传电压骤降事件触发开 关。					波形缓存工作模式为0时,写1使能
Bit28 WAVE_MEM_EN R/W 0 波形缓存工作模式为 1 时,写 1 使能一次波形缓存,立即开始存波形,写 0 波形缓存工作模式为 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。					一次波形缓存,立即开始存波形,写
Bit28 WAVE_MEM_EN R/W 0 一次波形缓存,立即开始存波形,写 0 波形缓存立即停止存波形。波形缓存工作模式为 2 时,写 1 使能 一次波形缓存,等待事件触发后开启 存数据,写 0 无效果。 波形缓存和上传电压骤降事件触发开 关。 0: 关闭: 1: 打开 波形缓存和上传电压骤升事件触发开 关。 0: 关闭: 1: 打开 波形缓存和上传电压骤升事件触发开 关。 0: 关闭: 1: 打开 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭: 1: 打开 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭: 1: 打开 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭: 1: 打开 Bit24 IB_OC_TRIG R/W 0 被形缓存和上传 IB 过流事件触发开 关。 0: 关闭: 1: 打开					0 无效果。
Bit26 U_SWELL_TRIG R/W O	Rit28	WAVE MEM EN	R/M	0	波形缓存工作模式为1时,写1使能
Bit27 U_DIP_TRIG R/W 0 波形缓存工作模式为 2 时,写 1 使能一次波形缓存,等待事件触发后开启存数据,写 0 无效果。 Bit26 U_DIP_TRIG R/W 0 波形缓存和上传电压骤降事件触发开关。0: 关闭: 1: 打开 Bit26 U_SWELL_TRIG R/W 0 波形缓存和上传电压骤升事件触发开关。0: 关闭: 1: 打开 Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开关。0: 关闭: 1: 打开 Bit24 IB_OC_TRIG R/W 0 波形缓存和上传 IB 过流事件触发开关。0: 关闭: 0: 关闭: 1: 打开	DitZo	WAVE_MEM_EN	10,00		一次波形缓存,立即开始存波形,写
Bit27					0波形缓存立即停止存波形。
Page					波形缓存工作模式为2时,写1使能
Bit27 U_DIP_TRIG R/W 0 波形缓存和上传电压骤降事件触发开 关。 0: 关闭; 1: 打开 Bit26 U_SWELL_TRIG R/W 0 波形缓存和上传电压骤升事件触发开 关。 0: 关闭; 1: 打开 Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 Bit24 IB_OC_TRIG R/W 0 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭; 2: 打开					一次波形缓存,等待事件触发后开启
Bit27 U_DIP_TRIG R/W 0 美。 0: 关闭; 1: 打开 Bit26 U_SWELL_TRIG R/W 0 被形缓存和上传电压骤升事件触发开关。 0: 关闭; 1: 打开 Bit25 IB_LC_TRIG R/W 0 被形缓存和上传 IB 欠流事件触发开关。 0: 关闭; 1: 打开 Bit24 IB_OC_TRIG R/W 0 被形缓存和上传 IB 过流事件触发开关。 0: 关闭; 以形缓存和上传 IB 过流事件触发开关。 0: 关闭; Bit24 IB_OC_TRIG R/W 0 关闭;					存数据,写0无效果。
Bit27 U_DIP_TRIG R/W 0 0: 关闭; 1: 打开 Bit26 U_SWELL_TRIG R/W 0					波形缓存和上传电压骤降事件触发开
Bit26	Rit27	II DIP TRIG	R/M	0	关。
Bit26 U_SWELL_TRIG R/W 0 波形缓存和上传电压骤升事件触发开 关。 0: 关闭; 1: 打开 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭; 20: 关闭;	DILET	O_DIF_TRIG	FX/VV	o	0: 关闭;
Bit26 U_SWELL_TRIG R/W 0 美。 0: 关闭; 1: 打开 Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭; Bit24 IB_OC_TRIG R/W 0 英。 0: 关闭; 					1: 打开
Bit26 U_SWELL_TRIG R/W 0 0: 关闭; 1: 打开 Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 Bit24 IB_OC_TRIG R/W 0 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭;					波形缓存和上传电压骤升事件触发开
Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 Bit24 IB_OC_TRIG R/W 0 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭; 2: 关闭;	Rit26	II SWELL TRIC	D/\\/	0	关。
Bit25 IB_LC_TRIG R/W 0 波形缓存和上传 IB 欠流事件触发开 关。 0: 关闭; 1: 打开 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭; 2: 打开 Bit24 IB_OC_TRIG R/W 0 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭;	DitZO	O_SWELL_INIG	17///	0	0: 关闭;
Bit25					1: 打开
Bit25 IB_LC_TRIG R/W 0 0: 关闭; 1: 打开 波形缓存和上传 IB 过流事件触发开 关。 Bit24 IB_OC_TRIG R/W 0 关。 0: 关闭; 0: 关闭;					波形缓存和上传 IB 欠流事件触发开
Bit24 IB_OC_TRIG R/W 0 美。 0: 关闭;	Dit25	IR I C TRIC	D/M/		关。
Bit24 IB_OC_TRIG R/W 0 波形缓存和上传 IB 过流事件触发开 关。 0: 关闭;	DILZO	IB_LC_IRIG	FX/VV	0	0: 关闭;
Bit24 IB_OC_TRIG R/W 0 关。 0: 关闭;					1: 打开
Bit24 IB_OC_TRIG R/W 0 0: 关闭;					波形缓存和上传 IB 过流事件触发开
0: 关闭;	Dit 2.4	IB OC TRIC	D/\^/		关。
1: 打开	BIIZ4	IB_UC_IKIG	K/VV	U	0: 关闭;
,					1: 打开

0x07, R/W,	计量控制寄存器 5,DSP	_CTRL	.5	
位		R/W	默认值	功能说明
				波形缓存和上传IA欠流事件触发开
Bit23	IA_LC_TRIG	R/W	0	关。
BREO	<u> </u>			0: 关闭;
				1: 打开
				波形缓存和上传IA过流事件触发开
Bit22	IA_OC_TRIG	R/W	0	关。
BREE		1000		0: 关闭;
				1: 打开
				波形缓存和上传欠压事件触发开关。
Bit21	U_LV_TRIG	R/W	0	0: 关闭;
				1: 打开
				波形缓存和上传过压事件触发开关。
Bit20	Bit20 U_OV_TRIG	R/W	0	0: 关闭;
				1: 打开
				DMA 通道输出波形长度选择。
	WAVE_LENGTH		0	0: 1 个周波。
Bit[19:16]		R/W		1:2个周波。
Bit[10:10]		1000		2: 3 个周波。
				15: 16 个周波。
Bit15	保留		0	为保证系统正常工作,必须写入默认
J. I. I.	N. E.			值。
			0	波形缓存和上传的电压波形是否经过
Bit14	WAVE U HPF SEL	R/W		高通滤波器选择。
	· · · · · · · · · · · · · · · · · · ·			0: 不经过;
				1: 经过
				波形缓存和上传的电流 IA 波形是否
Bit13	WAVE_IA_HPF_SEL	R/W	0	经过高通滤波器选择。
BRIO			0	0: 不经过;
				1: 经过
Bit12	WAVE IB HPF_SEL	R/W	0	波形缓存和上传的电流 IB 波形是否
DICIZ	VVAVE_ID_I	17/44		经过高通滤波器选择。

0x07,R/W,计量控制寄存器 5,DSP_CTRL5						
位		R/W	默认值	功能说明		
				0: 不经过;		
				1: 经过		
Bit11	保留		0	为保证系统正常工作,必须写入默认		
DICTI				值。		
				波形缓存和上传的 U 通道开关,该		
				Bit 决定是否存储或发送 U 通道数		
Bit10	WAVE_U_SEL	R/W	0	据。		
				0: 否;		
				1: 是		
				波形缓存和上传的 IA 通道开关,该		
				Bit 决定是否存储或发送 IA 通道数		
Bit9	WAVE_IA_SEL	R/W	0	据。		
				0: 否;		
				1: 是		
				波形缓存和上传的 IB 通道开关,该		
	WAVE_IB_SEL	R/W	0	Bit 决定是否存储或发送 IB 通道数据		
Bit8				(若波形缓存配置 Bit8,Bit9,Bit10		
Dito				同时使能,该 Bit 位失效)。		
				0: 否;		
				1: 是		
				波形上传 DMA 模式奇偶校验选择。		
Bit7	SP_CHECK	R/W	0	0: 奇校验;		
				1: 偶校验		
				波形上传的 SPI 极性选择。		
Bit6	SPI_POL	R/W	0	0: 负;		
				1: 正		
				波形上传的 SPI 相位选择。		
Bit5	SPI_PHA	R/W	0	0: 负;		
				1: 正		
				波形上传的 DMA 通道手动开关		
Bit[4:3]	DMA_MANUALCTRL	R/W	0	0: 无效;		
				1: 手动发		

0x07,R/W,计量控制寄存器 5,DSP_CTRL5					
位		R/W	默认值	功能说明	
				2: 手动停	
				3: 保留	
				波形上传的 DMA 通道工作模式:	
				0: 手动开始发,发满	
				WAVE_LENGTH 个周波停。	
				1: 手动开始发,事件触发停或手动	
				停。	
Bit[2:0]	DMA_MODE	R/W	0	2: 事件触发开始发,手动停。	
				3: 事件触发开始发,发满	
				WAVE_LENGTH 个周波停。	
				4~7: 手动开始发,手动停。	
				在使能 DMA 传输前,必须至少打开	
				一路波形缓存和上传的通道。	

2.4.7 DSP_CTRL6 寄存器

表28. 计量控制寄存器(0x80, DSP_CTRL6)

0x80,R/W,计量控制寄存器,DSP_CTRL6					
位		R/W	默认值	功能说明	
				波形上传和缓存点数是否降低。	
				0: 不开启;	
Bit[31]	WAVE_POINT_ ON	R/W	0	1: 开启;	
	ON			关闭情况下计量点数等同于波形上传和缓存	
				点数。	
				基本倍数由计量点数决定	
		R/W		0: X1点(128,64,32点均可使用)	
Bit[30:29]	WAVE_POINT		0	1: X 1/2 点(128,64 点可使用)	
				2: X 1/4 点(仅 128 点可使用)	
				3: 等同于配置 0	
				罗氏线圈 IA 电流处理开关。	
Bit[28] DID1	DIDT_IA_ON	R/W	0	0: 不开启;	
				1: 开启;	

0x80, R/W,	0x80,R/W,计量控制寄存器,DSP_CTRL6					
位		R/W	默认值	功能说明		
				不能与基波精度提高开关同时开启,同时开		
				启的情况下默认罗氏线圈有效,基波精度提		
				高无效,DSP_MODE=8,9的情况下也不		
				支持罗氏线圈的开启。		
				罗氏线圈 IB 电流处理开关。		
				0: 不开启;		
				1: 开启;		
Bit[27]	DIDT_IB_ON	R/W	0	不能与基波精度提高开关同时开启,同时开		
				启的情况下默认罗氏线圈有效,基波精度提		
				高无效,DSP_MODE=8,9的情况下也不		
				支持罗氏线圈的开启。		
				电压过零检测阈值开关。		
Bit[26]	ZERO_EN_TH	R/W	0	0: 不开启;		
				1: 开启;		
				基波独立校正开关		
				0: 不开启;		
	FUND CALL O			1: 开启;		
Bit[25]	FUND_CALI_O N	R/W	0	当开启基波独立校准开关时,基波的相关校		
	N .			正寄存器将使用地址 0x81-0x8e 相关的寄存		
				器进行校正,否则将使用地址 0x25-0x32 相		
				关的寄存器进行校正。		
				基波提高测量精度开关		
				0: 关闭,精度与以前相同		
	FUND DDEG O			1: 开启,基波测量精度提高		
Bit[24]	FUND_PREC_O	R/W	0	不能与罗氏线圈采样开关同时开启,如果同		
				时开启基波数据会有错误。		
				当中心频率为 60hz 时,需要额外打开 Bit[8]		
				开关。		
Bit[23: 21]	保留	R/W	0	为保证系统正常工作,必须写入默认值。		
				低速系统时钟(819.2/409.6 Khz)下,计		
Bit[20]	SEL_ON	R/W	0	算不同路有效值开关		
				0: 关闭,关闭的情况下默认计算两路电流		
L	i .	l .	Ī			

0x80,R/W,计量控制寄存器,DSP_CTRL6					
位		R/W	默认值	功能说明	
				有效值	
				1: 开启	
				在 SEL_ON 开启的情况下,进行有效值计	
				算通路的选择	
Bit[19: 18]	RMS_SEL	R/W	0	0: U和IA通道有效值计算开启	
Dit[19: 10]	NWO_OLL	IVVV	0	1:与配置 0 相同	
				2: IA 和 IB 通道有效值计算开启	
				3: 与配置 2 相同	
				频率测量来源	
Bit[17]	FRQ_ANA_ON	R/W	0	0: 采用数字频率测量方式	
				1:采用模拟测频率的方式	
				数字测量频率单位决定开关	
				0:依然由 FRQ_SEL 决定测量单位	
Bit[16]	FRQ_UNIT_ON	R/W	0	1:由 FRQ_UNIT_SEL 决定测量频率单位	
Dit[10]	PRQ_UNIT_UN	R/VV	O	此开关只作用于数字测量频率平均周期选	
				择。模拟测量频率平均周期选择只和	
				FRQ_UNIT_SEL 相关。	
				数字/模拟测量频率平均周期选择	
				0:1个周波平均频率	
Bit[15:12]	FRQ_UNIT_SEL	R/W	0	1:2个周波平均频率	
				15:16 个周波平均频率	
				电流过零检测阈值开关,IA/IB 共用此开	
Bit[11]	ZERO EN TH I	R/W	0	关。	
Dit[11]	22NO_2N_111_1	1000	o o	0: 不开启;	
				1: 开启;	
Bit[10:9]	保留	R/W	0	为保证系统正常工作,必须写入默认值。	
				0: 50Hz 中心频率	
	FREQ_CHANG			1: 60Hz 中心频率	
Bit[8]	E	R/W	0	中心频率为 60hz 时,将此开关和基波精度	
	_			提高开关同时打开,可以提高 60hz 的基波	
				测量精度	

0x80,R/W,计量控制寄存器,DSP_CTRL6					
位		R/W	默认值	功能说明	
Bit[7:0]	保留	R/W	0	为保证系统正常工作,必须写入默认值。	

2.4.8 DIP_SWELL_CTRL 寄存器

表29. 电压骤升骤降控制寄存器(0x8f,DIP_SWELL_CTRL)

0x8f,R/W,电压骤升骤降控制寄存器,DIP_SWELL_CTRL					
位		R/W	默认值	功能说明	
				电压骤降事件结束中断	
				读 0: 电压骤降事件结束未发生;	
Bit[31]	DIP_END	R/C	0	读 1: 电压骤降事件结束已发生;	
				写 0: 无影响。	
				写 1: 清该 bit。	
				电压骤升事件结束中断	
	CM/ELL EN			读 0: 电压骤升事件结束未发生;	
Bit[30]	SWELL_EN	R/C	0	读 1: 电压骤升事件结束已发生;	
			写 0: 无影响。		
				写 1: 清该 bit。	
				电压骤降事件结束中断使能	
Bit[29]	DIP_END_E	R/W	0	0: 电压骤降事件结束中断使能关闭	
Dit[20]	N		O	1: 电压骤降事件结束中断使能开启	
				TO BE WATER TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TO	
				电压骤升事件结束中断使能	
Bit[28]	SWELL_EN	R/W	0	0: 电压骤升事件结束中断使能关闭	
	D_EN			1: 电压骤升事件结束中断使能开启	
				电压骤升/骤降判断时间单位选择,以半波为最	
	DID OWELL			小粒度	
Bit[27:12]	Bit[27:12] DIP_SWELL R/W	0	0: 1个半波判断		
	_UNIT			1: 2 个半波判断	
				65535: 65536 个半波判断	

0x8f,R/W,电压骤升骤降控制寄存器,DIP_SWELL_CTRL						
位		R/W	默认值	功能说明		
Bit[11:0]	保留	R/W	0	为保证系统正常工作,必须写入默认值。		

2.5 计量数据寄存器

发生片外输入 RSTN 复位、RX 复位或软件复位时,所有计量数据寄存器被复位。

2.5.1 直流分量寄存器

表30. 直流分量寄存器

地址	寄存器	R/W	数据格式	说明			
0x22	DSP_DAT_DCU	R	32-Bit 补 码	电压通道直流值	默认配置下刷新		
0x23	DSP_DAT_DCIA	R	32-Bit 补 码	电流 A 通道直流值	40ms,稳定 120ms (具体时间与系统时		
0x24	DSP_DAT_DCIB	R	32-Bit 补 码	电流 B 通道直流值	钟的准确度有关)。		

2.5.2 有效值寄存器

表31. 电压/电流/测量信号(M)有效值寄存器

地址	寄存器	R/W	数据格式	说明	
0x0E	DOD DAT DMCOU	R	32-Bit 补	电压瞬时有效值	默认配置下
UXUE	0E DSP_DAT_RMS0U		码	电压 <u></u> 件的有双围	更新时间为
OVOE	0x0F DSP_DAT_RMS0IA	R	32-Bit 补	电流 A 瞬时有效值	10ms,稳定
UXUF		K	码	电视片辨明有双值	时间为 30ms
	DSP_DAT_RMS0IB	R		电流 B 瞬时有效值	(具体时间
0.40			32-Bit 补		与系统时钟
0x10			码		的准确度有
					美)。
0x19	DOD DAT DMOALL	_	32-Bit 补	中国亚拉车港店	默认配置下
0x19	DSP_DAT_RMS1U	R	码	电压平均有效值	更新时间为

地址	寄存器	R/W	数据格式	说明	
0x1A	DSP_DAT_RMS1IA	R	32-Bit 补 码	电流 A 平均有效值	40ms,稳定 时间为
0x1B	DSP_DAT_RMS1IB	R	32-Bit 补 码	电流 B 平均有效值	120ms (具体时间与系统时钟的准确度有关)。
0x1E	DSP_DAT_RMSU_AVG	R	32-Bit 补 码	10 或 12 个周波(通过电 网频率选择)的电压有 效值平均值	
0x1F	DSP_DAT_RMSIA_AVG	R	32-Bit 补 码	10 或 12 个周波(通过电 网频率选择)的电流 IA 有效值平均值	
0x20	DSP_DAT_RMSIB_AVG	R	32-Bit 补 码	10 或 12 个周波(通过电 网频率选择)的电流 IB 有效值平均值	

2.5.3 有功/无功功率寄存器

表32. 有功/无功功率寄存器

地址	寄存器	R/W	数据格式	说明	
0x08	DSP_DAT_PA	R	32-Bit 补 码	A 通道瞬时有功功率	
0x09	DSP_DAT_QA	R	32-Bit 补 码	A 通道瞬时无功功率	
0x0A	DSP_DAT_SA	R	32-Bit 补 码	A 通道瞬时视在功率	默认配置下更新时间为 20ms,稳定时间为
0x0B	DSP_DAT_PB	R	32-Bit 补 码	B通道瞬时有功功率	60ms(具体时间与系统时钟的准确度有关)。
0x0C	DSP_DAT_QB	R	32-Bit 补 码	B通道瞬时无功功率	
0x0D	DSP_DAT_SB	R	32-Bit 补 码	B通道瞬时视在功率	
0x13	DSP_DAT_PA1	R	32-Bit 补 码	A 通道平均有功功率	默认配置下更新时间为 80ms,稳定时间为

地址	寄存器	R/W	数据格式	说明	
0x14	DSP DAT QA1	R	32-Bit 补	32-Bit 补 A 通道平均无功功率	240ms(具体时间与系
			码		统时钟的准确度有关)。
0x15	DSP_DAT_SA1	R	32-Bit 补	A 通道平均视在功率	
			码		
0x16	DSP_DAT_PB1	R	32-Bit 补	B 通道平均有功功率	
			码		
0x17	DSP_DAT_QB1	R	32-Bit 补	B 通道平均无功功率	
			码		
0x18	DSP_DAT_SB1	R	32-Bit 补	B 通道平均视在功率	
			码		

2.5.4 基波通道数据寄存器

表33. 基波通道瞬时值寄存器

地址	寄存器	R/W	数据格式	说明
0x11	DSP_DAT_CH1	R	32-Bit 补 码	基波可选通道 1 瞬时值
0x12	DSP_DAT_CH2	R	32-Bit 补 码	基波可选通道 2 瞬时值

表34. 基波通道平均值寄存器

地址	寄存器	R/W	数据格式	说明
0x1C	DSP_DAT_CH1_AVG	R	32-Bit 补 码	基波可选通道 1 平均值
0x1D	DSP_DAT_CH2_AVG	R	32-Bit 补 码	基波可选通道2平均值

2.5.5 电网频率寄存器

表35. 电网频率寄存器(0x21, DSP_DAT_FRQ)

地址	寄存器	R/W	数据格式	说明
			32-Bit 补 码	电网频率,与 FRQ_SEL 和 DSP_CTRL6 有关。
0x21	DSP_DAT_FRQ	R		默认配置下,更新时间为 320ms, 稳定时间为
			μ—)	640ms(具体时间与系统时钟的准确度有关)。

2.6 能量累加寄存器

表36. 能量累加寄存器

地址	寄存器	R/W	数据格式	说明
				能量累加器防潜阈值。当防潜能量累加器累加值
			32-Bit 无符	超过 EGY_CRPTH 并且高速能量累加器累加值
0x39	EGY_CRPTH	R/W	号数	未超过 EGY_PWRTH 时,高速能量累加器的累
				加值会被清掉。
				能量累加器累加阈值。由于能量累加器为
0x3A	EGY_PWRTH	R/W	32-Bit 无符	46Bit,实际高速能量累加器累加阈值为该阈值
			号数	*16384; 低速能量累加器累加阈值为该阈值*4。
			00 D:t 丁於	能量累加器 1 累加常数。由于该寄存器值数据格
0x3B	EGY_CONST1	R/W	32-Bit 无符	式是 32-Bit 无符号数,当最高位为 1 的时候,该
			号数	数据非常大,所以最高位不建议配置为 1。
000	FOY OUT41	D///	32-Bit 无符	
0x3C	EGY_OUT1L	R/W	号数	能量累加器 1 累加值低位
000	FOY OUTALL	R/W	32-Bit 无符	能量累加器 1 累加值高位
UX3D	0x3D EGY_OUT1H		号数	低 14Bit 有效
٥٠٠٥٦	FOV OFONT4	Б	32-Bit 无符	高速能量累加器 1 脉冲计数器
0x3E	EGY_CFCNT1	R	号数	高速能量累加器每溢出2次,计数值增加1。
		R/W	32-Bit 无符 号数	能量累加器 2 累加常数。由于该寄存器值数据格
0x3F	EGY_CONST2			式是 32-Bit 无符号数, 当最高位为 1 的时候, 该
				数据非常大,所以最高位不建议配置为 1。
0x40	EGY OUT2L	R/W	32-Bit 无符	能量累加器2累加值低位
0.40	EGI_OUIZL	IX/VV	号数	化里尔州帕 2 尔州巴瓜巴
0x41	EGY_OUT2H	R/W	32-Bit 无符	能量累加器 2 累加值高位
0,41	LG1_001211	I X/ V V	号数	低 14Bit 有效
0x42	EGY_CFCNT2	R	32-Bit 无符	高速能量累加器 2 脉冲计数器
0,42	LOT_OF ONTZ		号数	高速能量累加器每溢出 2 次,计数值增加 1。
			32-Bit 无符	能量累加器 3 累加常数。由于该寄存器值数据格
0x43	EGY_CONST3	R/W	号数	式是 32-Bit 无符号数, 当最高位为 1 的时候, 该
			ケ数	数据非常大,所以最高位不建议配置为 1。
0x44	EGY_OUT3	R/W	32-Bit 无符	能量累加器 3 累加值
0.44	LG1_0013		号数	пелин Схин
0x45	EGY_CFCNT3	R	32-Bit 无符	低速能量累加器 3 脉冲计数器

地址	寄存器	R/W	数据格式	说明		
			号数	低速能量累加器每溢出 1 次,计数值增加 1。		
0x46	EGY_CONST4	R/W	32-Bit 无符 号数	能量累加器 4 累加常数。由于该寄存器值数据格式是 32-Bit 无符号数,当最高位为 1 的时候,该数据非常大,所以最高位不建议配置为 1。		
0x47	EGY_OUT4	R/W	32-Bit 无符 号数	能量累加器 4 累加值		
0x48	EGY_CFCNT4	R	32-Bit 无符 号数	能量累加器 4 脉冲计数器 低速能量累加器每溢出 1 次,计数值增加 1。		
0x49	EGY_CONST5	R/W	32-Bit 无符 号数	能量累加器 5 累加常数。由于该寄存器值数据格式是 32-Bit 无符号数,当最高位为 1 的时候,该数据非常大,所以最高位不建议配置为 1。		
0x4A	EGY_OUT5	R/W	32-Bit 无符 号数	能量累加器 5 累加值		
0x4B	EGY_CFCNT5	R	32-Bit 无符 号数	能量累加器 5 脉冲计数器 低速能量累加器每溢出 1 次,计数值增加 1。		
0x4C	EGY_CONST6	R/W	32-Bit 无符 号数	能量累加器 6 累加常数。由于该寄存器值数据格式是 32-Bit 无符号数,当最高位为 1 的时候,该数据非常大,所以最高位不建议配置为 1。		
0x4D	EGY_OUT6	R/W	32-Bit 无符 号数	能量累加器 6 累加值		
0x4E	EGY_CFCNT6	R	32-Bit 无符 号数	能量累加器 6 脉冲计数器 低速能量累加器每溢出 1 次,计数值增加 1。		
0x4F	EGY_CONST7	R/W	32-Bit 无符 号数	能量累加器 7 累加常数。由于该寄存器值数据格式是 32-Bit 无符号数,当最高位为 1 的时候,该数据非常大,所以最高位不建议配置为 1。		
0x50	EGY_OUT7	R/W	32-Bit 无符 号数	能量累加器 7 累加值		
0x51	EGY_CFCNT7	R	32-Bit 无符 号数	能量累加器 7 脉冲计数器 低速能量累加器每溢出 1 次,计数值增加 1。		
0x52	EGY_CONST8	R/W	32-Bit 无符 号数	能量累加器 8 累加常数。由于该寄存器值数据格式是 32-Bit 无符号数,当最高位为 1 的时候,该数据非常大,所以最高位不建议配置为 1。		
0x53	EGY_OUT8	R/W	32-Bit 无符	能量累加器 8 累加值		

地址	寄存器	R/W	数据格式	说明	
			号数		
0x54	OVE A FOY OF CNTS	R	32-Bit 无符	能量累加器 8 脉冲计数器	
0.004	x54 EGY_CFCNT8 I		号数	低速能量累加器每溢出 1 次,计数值增加 1。	

2.7 相位测量寄存器

表37. 相位测量寄存器

地址	寄存器	R/W	数据格式	说明
0x61	Dep pue ett	R/W	32-Bit 无符号数	相位测量控制位,写操作使能一
UXOT	DSP_PHS_STT	IK/VV	32-BII 无付亏数	次相位测量。
0x62	DSP_PHS_U	R	32-Bit 无符号数	电压相位值
0x63	DSP_PHS_UN	R	32-Bit 无符号数	电压过零点之前波形数据值
0x64	DSP_PHS_UP	R	32-Bit 无符号数	电压过零点之后波形数据值
0x65	DSP_PHS_I	R	32-Bit 无符号数	电流相位值
0x66	DSP_PHS_IN	R	32-Bit 无符号数	电流过零点之前波形数据值
0x67	DSP_PHS_IP	R	32-Bit 无符号数	电流过零点之后波形数据值

2.8 功率潜动阈值寄存器

表38. 功率潜动阈值寄存器

地址	寄存器	R/W	数据格式 说明	
Over			A 通道和 B 通道的瞬时有功功率/无功功率/视在功	
0x55 DSP_OV_THL	R/W	码	率的潜动判断下限阈值	
OvEG	0x56 DSP_OV_THH		32-Bit 补	A 通道和 B 通道的瞬时有功功率/无功功率/视在功
0x56			码	率的潜动判断上限阈值

2.9 电压骤升骤降寄存器

表39. 电压骤升骤降阈值寄存器

地址	寄存器	R/W	数据格式	说明
0x57	DSP_SWELL_THL	R/W	32-Bit 补 码	电压骤升下限阈值。
0x58	DSP_SWELL_THH	R/W	32-Bit 补	电压骤升上限阈值。
0x58	DSP_SWELL_THH	R/W	码	电压骤升上限阈值。

地址	寄存器	R/W	数据格式	说明
0x59	DSP_DIP_THL	R/W	32-Bit 补 码	电压骤降下限阈值
0x5A	DSP_DIP_THH	R/W	32-Bit 补 码	电压骤降上限阈值
0x6A	DAT_SWELL_CNT	R/C	32-Bit 补 码	电压骤升时间记录,最小单位为半波,单位 可配置。24Bit 有效。向该寄存器写任意值, 可清零该计数值。
0x6B	DAT_DIP_CNT	R/C	32-Bit 补 码	电压骤降时间记录,最小单位为半波,单位 可配置。24Bit 有效。向该寄存器写任意值, 可清零该计数值。
0x90	SWELL_REG_MAX _CNT	R/C	32-Bit 补 码	电压骤升最大值时间记录寄存器,最小单位 为半波,单位可配置。24Bit 有效。向该寄存 器写任意值,可清零该计数值。
0x91	DIP_REG_MIN_CN T	R/C	32-Bit 补 码	电压骤降最小值时间记录寄存器,最小单位 为半波,单位可配置。24Bit 有效。向该寄存 器写任意值,可清零该计数值。
0x92	SWELL_REG_MAX	R	32-Bit 补 码	电压骤升的最大值
0x93	DIP_REG_MIN	R	32-Bit 补 码	电压骤降的最小值

2.10 快速检测寄存器

表40. 快速检测阈值寄存器

地址	寄存器	R/W	数据格式	说明	
0x5B	FD_OVTH	R/W	30-Bit 补 码	快速检测过压阈值。位宽为 30Bit。	
0x5C	FD_LVTH	R/W	30-Bit 补 码	快速检测欠压阈值。位宽为 30Bit。	
0x5D	FD_IA_OCTH	R/W	30-Bit 补 码	快速检测电流 A 通道过流阈值。位宽为 30Bit。	
0x5E	FD_IA_LCTH	R/W	30-Bit 补 码	快速检测电流 A 通道欠流阈值。位宽为 30Bit。	

地址	寄存器	R/W	数据格式	说明
0x5F	FD_IB_OCTH	R/W	30-Bit 补 码	快速检测电流 B 通道过流阈值。位宽为 30Bit。
0x60	FD_IB_LCTH	R/W	30-Bit 补 码	快速检测电流 B 通道欠流阈值。位宽为 30Bit。

2.11 波形数据寄存器

表41. 波形数据寄存器 (0x69, DAT_WAVE)

地址	寄存器	R/W	数据格式	说明
				波形数据读取,可重复读取该地址,从而获得完整波
0,460	0x69 DAT_WAVE R	0	32-Bit 补	形数据。若不需要读完全部数据,可通过计量控制寄
0x09		K	码	存器 5(0x07,DSP_CTRL5)的 Bit31 复位读取地
				址。

2.12 校表参数寄存器

发生片外输入 RSTN 复位、RX 复位或软件复位时,所有设置校表参数的寄存器均被复位为默认 值。下表中的"默认值"为十六进制数值。所有校表参数寄存器均需要参与参数配置自检校验。

2.12.1 预设直流偏置值寄存器

表42. 预设直流偏置值寄存器

地址	寄存器	默认值	R/W	数据格式	说明		
0x34	DSP_CFG_DCU	0	R/W	32-Bit 补 码	电压通道直流校正值		
0x35	DSP_CFG_DCI A	0	R/W	32-Bit 补 码	电流 A 通道直流校正值		
0x36	DSP_CFG_DCI B	0	R/W	32-Bit 补 码	电流 B 通道直流校正值		
所有核	所有校表参数寄存器均需参与参数配置自检校验。						

2.12.2 有效值校正寄存器

以下校正寄存器内所有的数值格式都为 1 位符号位, 31 位小数位(负数需要取反+1 在放入寄存器中)。

表43. 电压/电流/测量值有效值校正寄存器

地址	寄存器	默认值	R/W	数据格式	说明
0x2D	DSP_CFG_CALI_R	0	R/W	32-Bit 补	电压有效值比差校正
	MSU	U	FC/VV	码	
0x2E	DSP_CFG_RMS_D	0	R/W	32-Bit 补	电压有效值小信号校正
	CU	U	FC/VV	码	
0x2F	DSP_CFG_CALI_R	0	R/W	32-Bit 补	电流 A 有效值比差校正
	MSIA	U	FX/VV	码	
0x30	DSP_CFG_RMS_D	0	R/W	32-Bit 补	电流 A 有效值小信号校正
	CIA	U	FX/VV	码	
0x31	DSP_CFG_CALI_R	0	R/W	32-Bit 补	电流 B 有效值比差校正
	MSIB	U	FX/VV	码	
0x32	DSP_CFG_RMS_D	0	R/W	32-Bit 补	电流 B 有效值小信号校正
	CIB	0	IN/VV	码	
0x89	FUND_CALI_RMS	0	R/W	32-Bit 补	基波电压有效值比差校正
	U	0	17/00	码	
0x8a	FUND_RMS_DCU	0	R/W	32-Bit 补	基波电压有效值小信号校正
		0	IN/VV	码	
0x8b	FUND_CALI_RMSI	0	R/W	32-Bit 补	基波电流 A 有效值比差校正
	Α	U	FX/VV	码	
0x8c	FUND_RMS_DCIA	0	R/W	32-Bit 补	基波电流 A 有效值小信号校正
		U	FX/VV	码	
0x8d	FUND_CALI_RMSI	0	R/W	32-Bit 补	基波电流 B 有效值比差校正
	В	U	FX/VV	码	
0x8e	FUND_RMS_DCIB	0	R/W	32-Bit 补	基波电流 B 有效值小信号校正
		U	FX/VV	码	

2.12.3 功率校正寄存器

以下校正寄存器内所有的数值格式都为 1 位符号位, 31 位小数位(负数需要取反+1 在放入寄存器中)。

表44. 全波有功/无功功率校正寄存器

地址	寄存器	默认值	R/W	数据格式	说明
0x25	DSP_CFG_CALI_ PA	0	R/W	32-Bit 补 码	有功功率 A 比差校正

地址	寄存器	默认值	R/W	数据格式	说明
0x26	DSP_CFG_DC_P A	0	R/W	32-Bit 补 码	有功功率 A 小信号校正
0x27	DSP_CFG_CALI_ QA	0	R/W	32-Bit 补 码	无功功率 A 比差校正
0x28	DSP_CFG_DC_Q A	0	R/W	32-Bit 补 码	无功功率 A 小信号校正
0x29	DSP_CFG_CALI_ PB	0	R/W	32-Bit 补 码	有功功率 B 比差校正
0x2A	DSP_CFG_DC_P B	0	R/W	32-Bit 补 码	有功功率 B 小信号校正
0x2B	DSP_CFG_CALI_ QB	0	R/W	32-Bit 补 码	无功功率 B 比差校正
0x2C	DSP_CFG_DC_Q B	0	R/W	32-Bit 补 码	无功功率 B 小信号校正
0x81	FUND_CALI_PA	0	R/W	32-Bit 补 码	基波有功功率 A 比差校正
0x82	FUND_DC_PA	0	R/W	32-Bit 补 码	基波有功功率 A 小信号校正
0x83	FUND_CALI_QA	0	R/W	32-Bit 补 码	基波无功功率 A 比差校正
0x84	FUND_DC_QA	0	R/W	32-Bit 补 码	基波无功功率 A 小信号校正
0x85	FUND_CALI_PB	0	R/W	32-Bit 补 码	基波有功功率 B 比差校正
0x86	FUND_DC_PB	0	R/W	32-Bit 补 码	基波有功功率 B 小信号校正
0x87	FUND_CALI_QB	0	R/W	32-Bit 补 码	基波无功功率 B 比差校正
0x88	FUND_DC_QB	0	R/W	32-Bit 补 码	基波无功功率 B 小信号校正

2.12.4 门限值寄存器

表45. 门限值寄存器

地址	寄存器	默认值	R/W	数据格式	说明
0x39	EGY_CRP TH	0	R/W	32-Bit 补码	能量累加器防潜阈值。当防潜能量累加器累加值超过 EGY_CRPTH 并且高速能量累加器累加值未超过 EGY_PWRTH 时,高速能量累加器的累加值会被清掉。能量累加器 1 和能量累加器 2 分别有一个潜动能量累加器。当使能防潜功能后,该潜动能量累加值固定为 1。其累加速率与能量累加器 1 和能量累加器 2 累加速率相等。用户应分别在启动/潜动判断门限值寄存器(EGY_CRPTH)和能量累加门限值寄存器(EGY_PWRTH)设置各自的门限值。如果潜动能量累加器的累加值先达到EGY_CRPTH值时,能量累加器被清空,系统进入潜动状态。当能量累加器的累加值先达到 EGY_CRPTH值时,能量累加器被清空,系统进入潜动状态。当能量累加器的累加值先达到 EGY_CRPTH值时,能量累加器被清空,系统进入启动状态,正常工作。寄存器 EGY_CRPTH的实际位宽为 32位,但在参与启动/潜动的判断运算时,寄存器的内容会被自动在低位补 4 个 0,扩展到 36 位再参与运算。
0x3A	EGY_PWR TH	0	R/W	32-Bit 补码	能量累加器累加阈值。由于能量累加器为46Bit,实际高速能量累加器累加阈值为该阈值*16384;低速能量累加器累加阈值为该阈值*4。
0x55	DSP_OV_T HL	0	R/W	32-Bit 补码	A 通道和 B 通道的瞬时有功功率/无功功率/视在功率的潜动判断下限阈值。该寄存器需参与参数配置自检校验。
0x56	DSP_OV_T HH	0	R/W	32-Bit 补码	A 通道和 B 通道的瞬时有功功率/无功功率/视在功率的潜动判断上限阈值。
0x94	ZERO_TH_ U	0	R/W	32-Bit 补码	电压过零检测阈值功能开启之后,该阈值 用于判断是否屏蔽电压过零检测。如果电

地址	寄存器	默认值	R/W	数据格式	说明
					压有效值大于该阈值,不屏蔽电压过零检
					测; 反之, 屏蔽电压过零检测。
	0x95 ZERO_TH_ 0			32-Bit 补码	电流过零检测阈值功能开启之后,该阈值
		0 R/	R/W		用于判断是否屏蔽电流过零检测。如果电
0x95					流有效值大于该阈值,不屏蔽电流过零检
					测;反之,屏蔽电流过零检测。IA和IB
					通道共用此寄存器。

2.12.5 角差校正寄存器

表46. 角差校正寄存器(0x33, DSP_CFG_PHC)

地址	寄存器	默认值	R/W	数据格式	说明
					角差校正寄存器。该寄存器需要参与参
	0x33 DSP_CFG_P HC		R/W	32-Bit 补	数配置自检校验。
0x33		0		OZ-Bit 科	[10:0]位是 A 通道角差校正值。
					[26:16]位是 B 通道角差校正值。
					其范围为-766~767。

2.12.6 带通滤波器系数寄存器

表47. 带通滤波器系数寄存器(0x37, DSP_CFG_BPF)

地址	寄存器	默认值	R/W	数据格式	说明
0x37	DSP_CFG_B	0	R/W	32-Bit 补	带通滤波器系数。该参数的设置与计量 控制寄存器 0(0x02,DSP_CTRL0)的 DSP_MODE(Bit[7:4])相关。 DSP_MODE=0、1、2 时,写入 0x806764B6; DSP_MODE=6、7 时,写入
0,37	PF	O		码	0x80DD7A8C; DSP_MODE=8 时,写入 0x82B465F0; 其余模式不支持频率测量,该寄存器需 写 0x0。

2.13 校验和寄存器

表48. 校验和寄存器(0x38, DSP_CFG_CKSUM)

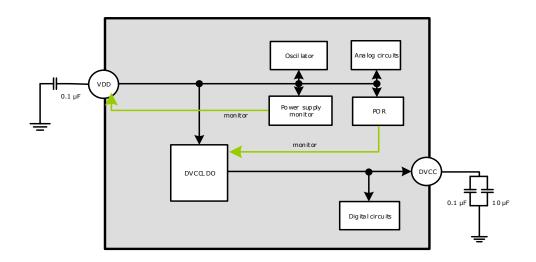
地址	寄存器	默认值	R/W	数据格式	说明			
					该寄存器需要参与参数配置自检校验。			
					该寄存器与地址 0x0~0x7,			
					0x25~0x3A,0x55~0x60,0x80 寄存			
					器一起参与参数配置自检校验。如果上			
					述所有寄存器值的累加和为			
	0x38 DSP_CFG_CKS UM				0xFFFFFFFF 时,参数配置自检通			
000		0	D///	32-Bit 补	过。			
UX38		0	R/W	码	为保证参数配置自校验成功,该寄存器			
					应写入 0xFFFFFFFF 与其它参与校验			
								的寄存器配置值和的差值。复位后,参
					数配置自校验不工作,自校验标志位为			
					O。当有至少一路 ADC 开启后,参数			
					配置自校验开始工作,自校验标志位能			
					够正确指示当前状态。			

表49. 参与参数自检寄存器列表

寄存器	类型	地址	描述	默认值
ANA_CTRL0	R/W	0x00	模拟控制寄存器 0	0x00000000
ANA_CTRL1	R/W	0X01	模拟控制寄存器 1	0x00000000
DSP_CTRL0	R/W	0x02	计量控制寄存器 0	0x00000000
DSP_CTRL1	R/W	0x03	计量控制寄存器 1	0x00000000
DSP_CTRL2	R/W	0x04	计量控制寄存器 2	0x00000000
DSP_CTRL3	R/W	0x05	计量控制寄存器 3	0x00000000
DSP_CTRL4	R/W	0x06	计量控制寄存器 4	0x00000000
DSP_CTRL5	R/W	0x07	计量控制寄存器 5	0x00000000
DSP_CFG_CALI_PA	R/W	0x25	有功功率 A 比差校正	0x00000000
DSP_CFG_DC_PA	R/W	0x26	有功功率 A 小信号校正	0x00000000
DSP_CFG_CALI_QA	R/W	0x27	无功功率 A 比差校正	0x00000000
DSP_CFG_DC_QA	R/W	0x28	无功功率 A 小信号校正	0x00000000
DSP_CFG_CALI_PB	R/W	0x29	有功功率 B 比差校正	0x00000000
DSP_CFG_DC_PB	R/W	0x2A	有功功率 B 小信号校正	0x00000000

DSP_CFG_CALI_QB	R/W	0x2B	无功功率 B 比差校正	0x00000000	
DSP_CFG_DC_QB	R/W	0x2C	无功功率 B 小信号校正	0x00000000	
DSP_CFG_CALI_RMSU	R/W	0x2D	电压有效值比差校正	0x00000000	
DSP_CFG_RMS_DCU	R/W	0x2E	电压有效值小信号校正	0x00000000	
DSP_CFG_CALI_RMSIA	R/W	0x2F	电流 A 有效值比差校正	0x00000000	
DSP_CFG_RMS_DCIA	R/W	0x30	电流 A 有效值小信号校正	0x00000000	
DSP_CFG_CALI_RMSIB	R/W	0x31	电流 B 有效值比差校正	0x00000000	
DSP_CFG_RMS_DCIB	R/W	0x32	电流 B 有效值小信号校正	0x00000000	
			角差校正寄存器。		
DSP_CFG_PHC	R/W	0x33	[10:0]位是 A 通道角差校正值。	0x000	
	10,00	0.00	[26:16]位是 B 通道角差校正值。	0,000	
			其范围为-766~767。		
DSP_CFG_DCU	R/W	0x34	电压通道直流校正值	0x00000000	
DSP_CFG_DCIA	R/W	0x35	电流 A 通道直流校正值	0x00000000	
DSP_CFG_DCIB	R/W	0x36	电流 B 通道直流校正值	0x00000000	
			带通滤波器系数。该参数的设置与		
			计量控制寄存器 0(0x02,		
			DSP_CTRL0)的DSP_MODE		
			(Bit[7:4]) 相关。		
			DSP_MODE=0、1、2 时,写入	0x00000000	
DSP CFG BPF	R/W	0.07	0x806764B6;		
DSP_CFG_BFF	IT/ V V	0x37	DSP_MODE=6、7 时,写入		
			0x80DD7A8C;		
			DSP_MODE=8 时,写入		
			0x82B465F0;		
			其余模式不支持频率测量, 该寄存		
			器需写 0x0。		
DSP_CFG_CKSUM	R/W	0x38	校验和配置寄存器	0x00000000	
			能量累加器防潜阈值。当防潜能量		
			累加器累加值超过 EGY_CRPTH	0x00000000	
EGY_CRPTH	R/W	0x39	并且高速能量累加器累加值未超过		
			EGY_PWRTH 时,高速能量累加		
			器的累加值会被清掉。		
EGY_PWRTH	R/W	0x3A	能量累加器累加阈值。由于能量累	0x00000000	

		加器为 46Bit,实际高速能量累加		
		器累加阈值为该阈值*16384; 低速		
		能量累加器累加阈值为该阈值*4。		
R/W	0x55	功率潜动判断下限阈值	0x00000000	
R/W	0x56	功率潜动判断上限阈值	0x00000000	
R/W	0x57	电压骤升下限阈值。	0x00000000	
R/W	0x58	电压骤升上限阈值。	0x00000000	
R/W	0x59	电压骤降下限阈值	0x00000000	
R/W	0x5A	电压骤降上限阈值	0x00000000	
D/\//	0v5B	快速检测过压阈值	0x00000000	
IV VV	UXSB	位宽为 30Bit 。	0.00000000	
R/W	0×5C	快速检测欠压阈值。	0x00000000	
1000	0,50	位宽为 30Bit 。		
R/W	0×5D	快速检测电流A通道过流阈值。	0x00000000	
	OXOD	位宽为 30Bit。	OXOCOCCCC	
R/W	0x5F	快速检测电流A通道欠流阈值。	0x00000000	
	OXOL	位宽为 30Bit。	OXOCOCCCC	
R/W	0x5F	快速检测电流 B 通道过流阈值。	0x00000000	
		位宽为 30Bit。		
R/W	0x60	快速检测电流 B 通道欠流阈值。	0x00000000	
		位宽为 30Bit。	0.000000000	
R/W	0x80	计量控制寄存器 6	0x00000000	
	R/W R/W R/W R/W R/W R/W R/W R/W R/W	R/W 0x56 R/W 0x57 R/W 0x58 R/W 0x59 R/W 0x5A R/W 0x5B R/W 0x5C R/W 0x5D R/W 0x5E R/W 0x5F R/W 0x60	器累加阈值为该阈值*16384; 低速能量累加器累加阈值为该阈值*4。 R/W 0x55 功率潜动判断下限阈值 R/W 0x56 功率潜动判断上限阈值。 R/W 0x57 电压骤升下限阈值。 R/W 0x58 电压骤升上限阈值。 R/W 0x59 电压骤降下限阈值 R/W 0x5A 电压骤降上限阈值 R/W 0x5A 电压骤降上限阈值 位宽为 30Bit。 R/W 0x5C 快速检测欠压阈值。 位宽为 30Bit。 R/W 0x5E 快速检测电流 A 通道过流阈值。 位宽为 30Bit。 R/W 0x5E 快速检测电流 A 通道欠流阈值。 位宽为 30Bit。 R/W 0x5F 快速检测电流 B 通道过流阈值。 位宽为 30Bit。	

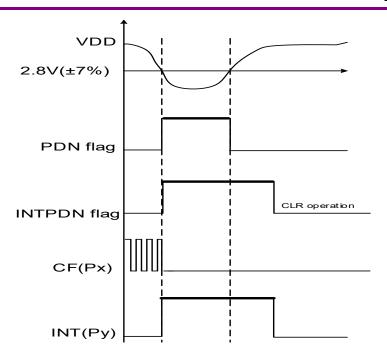


3 电源系统

V93XX 电源系统有以下几个特点:

- 3.3V 单电源供电,电压输入范围: 2.6~3.6V;
- 数字电源电路(DVCCLDO)为内部数字电路供电;
- 起振电路由 3.3V 电源直接供电;
- 支持掉电监测;
- 可控的基于掉电报警的 CF 保护机制。

图2. 电源系统



3.1 掉电监测电路

V93XX 内置掉电监测电路,可以实时监测引脚 VDD 的输入信号。当 VDD 引脚上的电平低于 2.8V (±7%) 时,系统发生掉电,并产生掉电中断。掉电监测电路始终工作。

图3. 掉电监测

3.2 数字电源电路

V93XX 内部集成了一个 LDO (数字电源电路 DVCCLDO)。该电路可以在输入电源变化的情况下稳定地为数字电路供电。此 LDO 始终工作。

数字电源电路具有 35mA 的驱动能力,即当数字电路上的负载电流小于 35mA 时,该电路能保持稳定的电压输出;当负载电流大于 35mA 时,该电路的输出电压会随着负载电流的增加而明显下降。

4 电压基准电路(Bandgap)

电压基准电路(Bandgap)输出一个随温度变化较小的(典型温度漂移 10 ppm/°C)约 1.21V 的基准电压,为 ADC 和 6.5MHz RC 时钟提供基准电压和偏置电流。Bandgap 电路默认开启。

该电路负载电流约 0.09mA (典型)。

用户可以通过配置模拟控制寄存器 1(0x01,ANA_CTRL1)中的 RESTL<1:0>(Bit[4:3])和 REST<2:0>(Bit[2:0])对 Bandgap 电路的温度系数进行调整,以便与系统(如片外元器件等)带来的温度系数相抵消。具体步骤如下:

- 1. 先确定现有温度系数寄存器的配置,假设当前细调寄存器 REST<2:0>='010', 粗调 RESTL<1:0>='00', 那么查表知道目前对应的温度系数调节幅度为+14ppm;
- 2. 实验确定电表的高低温误差。例如 20℃时误差为 0,高温 80℃误差为 0.6%,低温-40℃为-0.4%。那么需要调节的误差幅度是(0.6%-(-0.4%))/2,为 0.5%,调节方向以高温为基准,应该将高温误差往负调。对应 ppm 是-0.5%/(80-20)=-5000/60=-83ppm;
- 3. 误差和 Reference 的变化幅度是负两倍关系,因此对应要将 REF 往正方向调节 41.5 ppm。 考虑到现有配置已经是+14ppm,那么最终要调+55.5 ppm。 查表知道当 RESTL<1:0> = '11' 时,对应 56 ppm,REST<2:0> = '000'时,对应 0 ppm,组合起来等于 56 ppm。

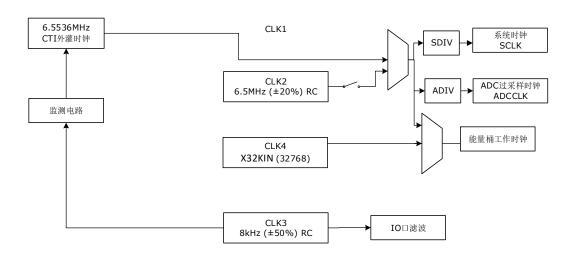
注意:对 Reference 温度参数的调节会影响到基本误差,因此,客户每设计一款新的产品时,首先确认 Reference 的温度参数,再对电能表进行误差校正。

Note1: 当Bandgap 温度系数的调整幅度为x时,电表计量误差的温度系数调整幅度为2x。

表50. Bandgap 电路相关寄存器

寄存器	位	默认值	说明
			电压基准(Bandgap)电路的温度系数粗调节。
			00: 0ppm;
	Bit[4:3]		01: -58ppm;
	RESTL<1:0	0	10: +111ppm;
	>		11: +56ppm;
ANA_CTR			正常计量时,为了获取最佳的计量性能和温度性能,用
L1			户必须根据计算结果进行调整。
			电压基准(Bandgap)电路的温度系数微调节。
	Bit[2:0] REST<2:0>	0	000: 0ppm;
			001: +7ppm;
			010: +14ppm;

寄存器	位	默认值	说明
			011: +28ppm;
			100: -32ppm;
			101: -21ppm;
			110: -14ppm;
			111: -7ppm;
			正常计量时,为了获取最佳的计量性能和温度性能,用
			户必须根据计算结果进行调整。


5 时钟

在 V93XX 中,时钟系统包括 4 个时钟源,包括:

- CTI 管腿外灌 6.5536MHz 时钟提供的时钟(CLK1): 经 SDIV 分频后(SDIV 通过 DSP_MODE(Bit<7:4>, 计量控制寄存器 0(0x02,DSP_CTRL0))控制), 供所有数字模 块使用; 经 ADIV 分频后(ADIV 通过 ADCKSEL(Bit<31:30>, 模拟控制寄存器 1(0x01,ANA_CTRL1))控制), 供 ADC 使用。发生片外 RSTN 复位、RX 复位或软件复位后,该电路自动开启。
- 内置高频 RC 振荡电路提供的 6.5MHz(批量芯片之间偏差在±20%以内,单个芯片-40~85 摄 氏度范围内偏差在±5%以内)RC 时钟(CLK2): 当 CTI 管腿外灌时钟缺失时,该时钟可供所 有数字模块使用。该电路可关闭。
- 内置低频 RC 振荡电路提供的 8KHz(±50%)RC 时钟(CLK3): 供内置的时钟监测/激励电路和部分 IO 滤波使用。只要系统不断电,该电路一直工作。
- 外部低频时钟(32768 Hz),通过 X32KIN 管脚输入,该时钟提供能量累加器低速累加使用。 能量累加器时钟通过 EGY_CLK_SEL(Bit23, 计量控制寄存器 1(0x03, DSP_CTRL1)) 控制。

上述四个时钟产生电路之间的关系如下图所示:

图4. 时钟系统

表51. 时钟产生电路相关寄存器

寄存器	位	默认值	说明
模拟控制寄存器 1	Bit7	0	CTI 外灌时钟使能。
(0x01,	XRST_PD	U	0: 使能;

寄存器	位	默认值	说明
ANA_CTRL1)			1: 禁止
			6.5M RC 时钟开关。
	Bit22	0	0: 打开;
	RCCLK_PD	0	1: 关闭
			正常工作下,该 Bit 必须设置为 0。
			6.5M RC 频率调节。
			默认 0b000000 为不调整。
			0b000001~0b011111: 每增加一个比
	Bit[29:24]	0	特,时钟频率相对于 0b000000 时的频率
	RCHTRIM<5:0>		增加 1.25%;
			0b111111~0b100000: 每减小一个比
			特,时钟频率相对于 0b000000 时的频率
			减少 1.25%。
	Bit[31:30] ADCKSEL<1:0>		ADC 时钟频率选择。00 对应默认频率
		0	819.2KHz。
			00: ×1;
			01: ×2;
			10: ×1/4;
			11: ×1/2
			DSP 工作模式
			0: 系统时钟 6.5536MHz, DSP 每周波采
			样点数 128。
			1: 系统时钟 6.5536MHz, DSP 每周波采
			样点数 64。
1. 导放烟囱左照 0			2: 系统时钟 6.5536MHz, DSP 每周波采
计量控制寄存器 0	Bit[7:4]		样点数 32。
(0x02,	DSP_MODE<3:0	0	3, 4, 5: 保留。
DSP_CTRL0)			6: 系统时钟 3.2768MHz, DSP 每周波采
			样点数 64。
			7: 系统时钟 3.2768MHz, DSP 每周波采
			样点数 32。
			8: 系统时钟 819.2KHz, DSP 每周波采样
			点数 32。(此时仅支持有效值计算,可通

寄存器	位	默认值	说明
			过 DSP_CTRL6 寄存器选择有效值计算通
			路)
			9: 系统时钟 409.6KHz, DSP 每周波采样
			点数 16。(此时仅支持有效值计算,可通
			过 DSP_CTRL6 寄存器选择有效值计算通
			路)
			其余:与模式0保持一致。
			能量累加器时钟选择位。时钟切换需要稳
计量控制寄存器 1	B:100		定时间,约为 107μs,请在稳定前关闭
(0x03,		0	CF.
DSP_CTRL1)	EGY_CLK_SEL		0: 204.8KHz;
			1: 32768Hz

5.1 外部输入高频时钟

V93XX 提供 CLK1 时钟,供系统、计量 VMA、ADC 和 UART/SPI 接口和能量累加器等使用。 CLK1 时钟来源 CTI 引脚输入。

用户可在 CTI 引脚外灌 6.5536MHz 时钟。如果需要切换到外灌时钟,需通过配置模拟控制寄存器(0x01,ANA CTRL1)打开外灌时钟使能,使能打开后即可自动切换到外灌时钟模式。

当使用 RCH 时钟代替 CLK1 时钟,此时支持两种模式应用:能量累加器功能不使用;选择使用 X32KIN 引脚灌入 32768Hz 频率时钟作为能量累加器时钟。

5.2 高频 RC 振荡电路

V93XX 提供 CLK2 时钟,供系统、计量 VMA、ADC 和 UART/SPI 接口和能量累加器等使用。系统时钟默认使用 CLK2 时钟,CLK2 时钟来自 RCH 时钟。V93XX 内置一个高频 RC 振荡器,产生一个 6.5 MHz(批量芯片之间偏差在 $\pm 20\%$ 以内,单个芯片-40~85 摄氏度范围内偏差在 $\pm 5\%$ 以内)的 RC 时钟。

在计量模式下,当 CTI 外灌时钟停止工作时,该电路自动开启,产生 CLK2,供所有数字电路使用。

发生片外输入 RSTN 复位、RX 复位或软件复位时,该电路和 Bandgap 电路自动打开。

为了方便调试和测试,RCH时钟可以通过Px 脚送出。需要配置SYS_IOCFGx,并打开RCH_OUT_EN(0x80, DSP_CTRL6)。由于时钟输出定义为第三类中断输出,因此需要将其他中断使能关闭,才能单独输出时钟信号。

5.3 外部输入低频时钟

外部可以向 V93XX 的 X32KIN 引脚灌入 32768Hz 频率时钟,为 V93XX 提供 CLK4 时钟,供能量 累加器低速累加使用。

6 复位

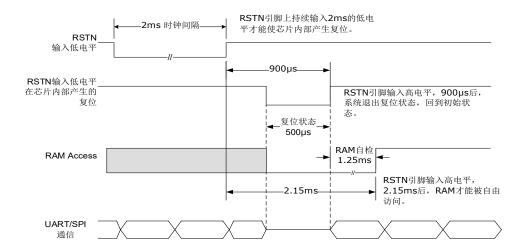
6.1 复位相关寄存器

表52. 复位相关寄存器

寄存器	位	默认值	功能描述						
	Bit[22:20] RST_SOURCE	0	Bit22	Bit21	Bit20	说明			
0x74 SYS_STS			0	0	1	保留。			
			0	1	0	发生了外部复位。			
			0	1	1	发生了 RX 复位。			
			1	0	0	发生了软件复位。			
0x6C	l		32-Bit 补码,可写不可读。向该寄存器写入						
软件复位控制寄存器,			0x4572BEAF,系统发生软件复位,所有电路均回到初						
SFTRST			始状态。						

6.2 外部复位(EXRST)

外部复位电路会监测 RSTN 的状态,当 RSTN 持续输入 2ms 的低电平时,芯片内部会产生复位。 之后,RSTN 引脚输入高电平,900µs 后,系统退出复位状态,进入初始状态。


发生外部复位时,RST_SOURCE 位(Bit[22:20],SYS_STS 系统状态寄存器描述(0x74,SYS_STS))被复位为 0b010。

在复位状态,外部 MCU 及计量 VMA 不能访问 RAM。系统退出复位状态后,RAM 会进行自检,持续时间约为 1.25ms,自检通过后 RAM 可被自由访问。

在复位状态,UART 或 SPI 接口处于 IDLE 模式。系统退出复位状态且 RAM 完成初始化之后,UART/SPI 立即工作。

图5. 外部复位时序图

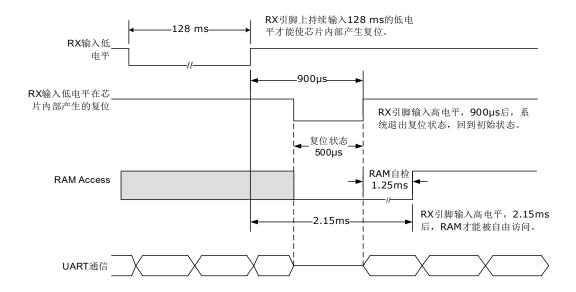
6.3 RX 复位

RX复位的方式取决于当前的通讯方式。

如果当前为 UART 通讯,当"RX/MOSI"引脚持续输入 128 ms 的低电平时,芯片内部会产生复位。之后,"RX/MOSI"引脚输入高电平,900μs 后,系统退出复位状态,进入初始状态。

如果当前为 SPI 通讯,当"RX/MOSI"和"A1/SPCSN"引脚持续输入 128 ms 的低电平,且 "A0/SPCK"引脚输入频率不低于 50Hz 的时钟时,芯片内部会产生复位。之后,RX 引脚输入高电平,900µs 后,系统退出复位状态,进入初始状态。

发生 RX 复位时,RST_SOURCE 位(Bit[22:20],SYS_STS 系统状态寄存器描述(0x74,SYS_STS))被复位为 0b011。


在复位状态,外部 MCU 及计量 VMA 不能访问 RAM。系统退出复位状态后,RAM 会进行自检,持续时间约为 1.25ms,自检通过后 RAM 可被自由访问。

在复位状态,UART/SPI 接口处于 IDLE 模式。系统退出复位状态且 RAM 完成初始化之后,UART/SPI 立即工作。

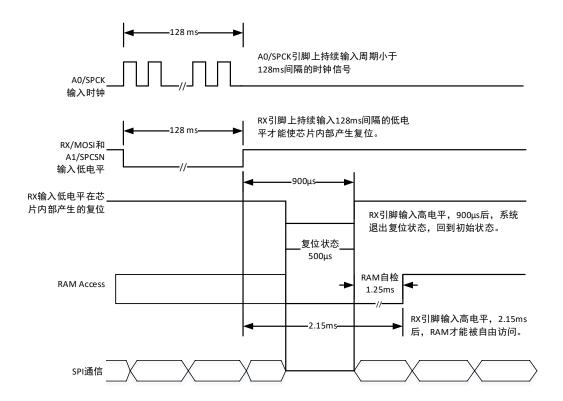
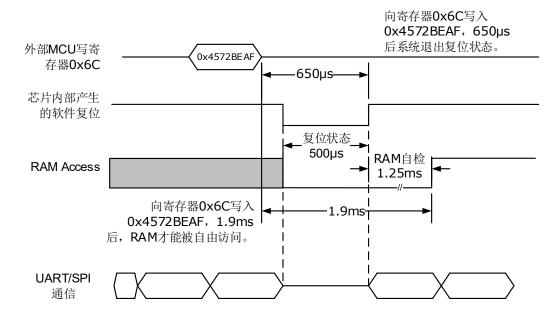

注意: 芯片上电后需做一次 RX 复位操作。

图6. UART 通讯时 RX 复位时序图

图7. SPI 通讯时 RX 复位时序图

6.4 软件复位

在系统通信正常情况下,SYS_SFTRST 寄存器(0x6C)写入 0x4572BEAF 可以使芯片内部产生复位,650µs 后,系统退出复位状态,进入初始状态。



发生软件复位时,RST_SOURCE 位(Bit[22:20],SYS_STS 系统状态寄存器描述(0x74,SYS_STS))被复位为 0b100。

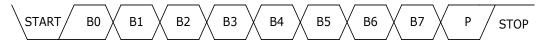
在复位状态,外部 MCU 及计量 VMA 不能访问 RAM。系统退出复位状态后,RAM 会进行自检,持续时间约为 1.25ms,自检通过后 RAM 可被自由访问。

在复位状态,UART/SPI 接口处于 IDLE 模式。系统退出复位状态且 RAM 完成初始化之后,UART/SPI 立即工作。

图8. 软件复位时序图

7 通用异步收发器(UART)

7.1 概述


V93XX 支持 UART 和 SPI 两种通信模式,无需通过外部硬件跳线,可以切换 SPI 通信和 UART 通信。V93XX 发生片外输入 RSTN 复位、RX 复位或软复位后默认使用 UART 通信。如果希望使用 SPI 通信,都必须通过 SPI 协议进行一次 SPI 接口初始化。

UART 端口具有如下特点:

- 异步半双工通信;
- 接收或发送的字节组成: 1-bit 开始位, 8-bit 数据, 1-bit 校验位(奇校验)和 1-bit 停止位;
- 不管接收还是发送,都是最低位(LSB)在前;
- 支持总线模式,即输出数据口空闲时,为高阻态。通过物理地址 A0 和 A1 最多支持 4 个 V93XX 共用一根数据总线。

V93XX UART 是一个带奇校验的标准 8 位 UART。UART 采用低字节先发,低位先发。UART 接收和发送的每个字节都包括 11 位,由 4 部分组成,从低位到高位分别是开始位("0",1-bit,START)、数据(8-bit,B0~B7)、奇校验位(1-bit,P)和停止位("1",1-bit,STOP)。无论发送还是接收,总是最低位(LSB)在前,最高位(MSB)在后。下图是一个 UART 字节的标准格式。

图9. 11-Bit 字节数据格式(LSB 到 MSB)

UART 协议是一个半双工协议,MCU 发送命令结束之后 1ms (与系统时钟的准确度有关),V93XX 才会上传数据。

UART 支持波特率自适应,推荐使用 1200bps~19200bps 的波特率。V93XX 通过接收到的第一个帧头来自动适应通信波特率。该波特率也会通过接下来的通信进行微调。如果通信波特率变动较大,则需要重新进行波特率自适应。在此之前,需要将 SYS MISC Bit0 UARTAUTOEN 置 1。

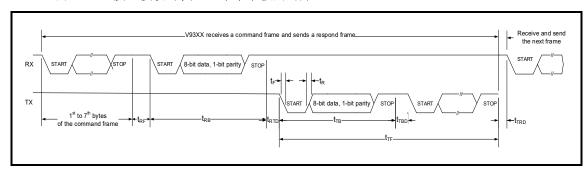
V93XX 支持连续写/广播连续写的通信命令,这个模式可节省参数配置时间。

在下面条件下, V93XX 的 UART 接收会被停止, 回到 IDLE 状态。

表53. UART 通讯错误

编号	条件	UART_ERR 置 1
1	UART 接收的帧头错误。	否
2	UART 接收超时,连续两个字节的时间间隔大于 20ms(与系统时	是

	钟的准确度有关)。	
3	UART 接收的奇校验位错误。	是
4	UART 接收的校验和字节错误。	是


7.2 通信协议

外部 MCU 对 V93XX 内一个或多个 32-bit 的寄存器进行读/写/广播操作均需要发送一个由多个字节组成的命令帧。各个字节的说明详见"写操作"、"读操作"和"广播写操作"。

进行读/写操作时,在收到外部 MCU 发送的命令帧后,V93XX 会针对不同的操作向外部 MCU 发送不同结构的应答帧,各个字节的说明详见"写操作"和"读操作"。进行广播写操作时,在收到外部 MCU 发送的命令帧后,V93XX 不会向外部 MCU 发送应答帧,以免发生通信冲突。

下图是 V93XX 的 UART 接口(RX 和 TX)接收与发送一个字节帧的时序。

图10. V93XX 的 UART 接口接收与发送一个字节帧的时序

表54. UART接口时序参数说明

时序参数	说明
t _{RB}	V93XX 的 RX 引脚接收完一个字节实际所需的时间。
	$t_{RB} = \frac{11}{baudrate}$
	其中,baudrate 为 V93XX 的 UART 接口实际的波特率。
t _{RF}	V93XX 的 RX 引脚接收时两个字节间的最大间隔时间:
	$t_{RF} = \frac{16}{\text{baudrate}}$
	其中,baudrate 为 V93XX 的 UART 接口实际的波特率。当理想波特率为 4800bps
	时,t _{RF} =3.33ms。如果 RX 引脚接收一帧数据字节之间,存在大于等于 t _{RF} 的时间
	间隔,则认为发生字节超时。发生超时后,UART接口进入 IDLE 模式,等待下一
	个命令帧。

时序参数	说明
t _{RTD}	V93XX 的 RX 引脚完成一个命令帧的接收与 TX 引脚开始发送应答帧之间的延时。
	0ms≤t _{RTD} ≤20ms
	注意:广播写操作时,不发送应答帧。外部 MCU 对 V93XX 进行连续两次广播写
	操作之间,建议至少等待 2ms。
t _{TF}	V93XX 的 TX 引脚发送一个应答帧实际所需的时间。进行读操作或写操作时,t _{TF}
	由读操作与写操作的应答帧的结构决定。广播写操作时,不发送应答帧。
t _{TB}	V93XX 的 TX 引脚发送完一个字节实际所需的时间。
	$t_{TB} = \frac{11}{baudrate}$
	其中,baudrate 为 V93XX 的 UART 接口实际的波特率。
T _{TBD}	V93XX 的 TX 引脚发送的一个应答帧里连续两个字节之间的延时。
	0ms≤t _{TBD} ≤20ms
t _{TRD}	V93XX 的 TX 引脚完成一个应答帧的发送与 RX 引脚开始接收下一个命令帧之间的
	延时。
	建议大于 2ms。
t _R	波形上升沿的时间,约为 300ns。
t _F	波形下降沿的时间,约为 300ns。

7.3 广播写操作

- 支持对 1~16 个地址连续的寄存器进行写操作。
- 不需要关心器件地址{A1, A0}。
- V93XX 不应答。

MCU 可以通过广播写对多个 V93XX 设备进行批量的寄存器写操作,这个模式可节省参数配置时间。

外部 MCU 对 V93XX 进行连续两次广播写操作之间,建议至少等待 2ms。

下图是这种模式的命令帧结构。

图11. 广播写操作通讯协议

表55. 广播写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0
1	HEADER	0	1	1	1	1	1	0	1
		广播写七	长度选择	(N)					
		0: 写 1 个 32 Bits 数据。							
2	CMD1	1: 写 2 个 32 Bits 数据。							
		15: 写	16 个 32	Bits 数据	0				
3	CMD2	广播写控	操作起始地	也址(D o))				
4	Data 0	写入寄存	字器(地址	业 D ₀)的	目标数据	的 Bit[7:0	 1		
	Byte 0	3, 1,4,	, _{HB} C	m = 0 / H V	- 14 <i>)</i>	#4 ={· · ·			
5	Data 0	写入寄存	字器(地址	业 D ₀)的	目标数据	的 Bit[15:	8]		
	Byte 1								
6	Data 0 Byte 2	写入寄存	字器(地址	业 D o)的	目标数据	的 Bit[23:	16]		
	Data 0								
7	Byte 3	写入寄存	字器(地址	业 D₀)的	目标数据	的 Bit[31:	24]		
	-	校验和	0。计算2	方法:将_	上述4个	目标数据的	字节(Data	a 0 Byte 0)~3)与
		CMD1 和 CMD2 按照字节累加并对累加和进行取反操作再加 0x33 后得							
8	CKSUM 0	到。公司	式如下:						
		CKSUM	0 = 0x3	3 + ~ (Cl	MD1 + CI	MD2 + Da	ata 0 Byte	0 + Data	0 Byte
		1 + Data	a 0 Byte 2	2 + Data (0 Byte 3)			
5xN+4	Data N	写入寄存	字器(地址	± D _N =D₀+	-N)的目	标数据的	Bit[7:0]		
	Byte 0								
5xN+5	Data N Byte 1	写入寄存	字器(地址	և D _N =D₀+	-N)的目	标数据的	Bit[15:8]		
	Data N								
5xN+6	Byte 2	写入寄存	字器(地址	il D _N =D₀+	-N)的目	标数据的	Bit[23:16]		
5xN+7	Data N	写 λ 宏 /		# Dv=D°4	-N)的目	标 数据的	Bit[31:24]		
JAIN 7	Byte 3	一一一	1 44 (162)		тил пры	7/1/3X 1/E E 1	Dit[O1.24]		
		校验和 N。计算方法:将上述 4×(N+1)个目标数据字节							
		Byte 0~	3)与CN	/ID1和 CI	MD2 按照	学节累加	并对累加。	和进行取员	反操作
5xN+8	CKSUM N	再加 0x	33 后得到]。公式如	下:				
		CKSUM	N = 0x3	3 + ~ (C	MD1 + C	MD2 + D	ata 0 Byte	0 + Data	0 Byte
			•		-		ata N Byte	e 0 + Data	a N
		Byte 1 +	Data N	Byte 2 +	Data N B	yte 3)			

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0
广播写操	作长度 N 等于	- 0 时,N	ICU 只需	要向 V93	XX 发送前	前8个字章	节的命令帧	0	

7.4 读操作

- 支持对 1~16 个地址连续的寄存器进行读操作。
- 必须匹配正确的器件地址{A1, A0}。
- V93XX 会应答。

外部 MCU 对 V93XX 内一个或多个 32 位数据进行读操作需要发送一个由 4 个字节组成的命令帧; 收到信息后, V93XX 会向外部 MCU 发送一个由(4×N + 5)(0≤N≤15, 定义见下表)个字节组成的应答帧。

图12. 读操作通讯协议

表56. 读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0
1	HEADER	0	1	1	1	1	1	0	1
		读操作书	(度选择)	(N)					
		0:读1	个 32 Bits	3数据。					
2	CMD1	1: 读2	个 32 Bits	数 据。		A1	A0	0	1
		15: 读 <i>′</i>	16 个 32 E	Bits 数据。	5				
3	CMD2	读操作起	足始地址((D ₀)					
		校验和。	计算方法	去:将CM	D1和CM	1D2 按照 ⁵	字节累加并	对累加和流	进行取
4	CKSUM	反操作再加 0x33 后得到。公式如下:							
		CKSUM	= 0x33 +	~ (CME	1 + CMD	2)			

表57. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0	
1	Data 0	从宏方界	፩ (₩₩ ₽ ୮ I	7。 / 读中:	的日标粉	握的 Rit[7	·01			
'	Byte 0	外可行名	从寄存器(地址 D ₀)读出的目标数据的 Bit[7:0]							
2	Data 0	从寄存器	暑(地址[D o)读出I	的目标数	据的 Bit[1	5:8]			

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0			
	Byte 1											
3	Data 0	从客左男	星(抽扑1	D ₀)读出	的目标数据	握的 Rit[2	3.161					
	Byte 2	//(미/11/1	t (vevir)	D 0 / 侯田	11 日 小 30.1		.0.10]					
4	Data 0	从客方男	从寄存器(地址 D ₀)读出的目标数据的 Bit[31:24]									
4	Byte 3	/八可行	春 (16141. I	D () /	1)口小奴;	որ ու ու ու	1.24]					
4xN+1	Data N	从客存品	昱(抽扑1	D _N =D ₀ +N) 读出的	目标数据	的 Bit[7:0]	1				
7711	Byte 0	//(11.11.1	t (Sessie)	DN D0.14	/ Km11	H 1/1/3X 1/H	д Б іцт.о _.					
4xN+2	Data N	从客左男	を (+41 +1- 1	Dv=Do+N)读出的	日标粉挥	的 Rit[15 :	R1				
4/11/2	Byte 1	/八司 行有	人寄存器(地址 D _N =D₀+N)读出的目标数据的 Bit[15:8]									
4xN+3	Data N	从客左男	从寄存器(地址 D _N =D ₀ +N)读出的目标数据的 Bit[23:16]									
4/11/13	Byte 2	/八司 行有										
4xN+4	Data N	从寄存器(地址 D _N =D ₀ +N)读出的目标数据的 Bit[31:24]										
7/11/4	Byte 3	/八司 /丁旬	t (renti		/ 侯田町	口小双项	ոյ Եռվել	24]				
		校验和。	计算方法	去:将上这	<u>₹</u> 4× (N+	· 1)个目标	示数据字章	节(Data	0~N			
		Byte 0~3,来自 V93XX)与 CMD1和 CMD2(来自 MCU)按照字节										
4xN+5	CKSUM	累加并邓	寸累加和這	进行取反抗	操作再加()x33 后得	到。公式	如下:				
4/11/13	CROOM	CKSUM	CKSUM = 0x33 + ~ (CMD1 + CMD2 + Data 0 Byte 0 + Data 0 Byte 1									
		+ Data (+ Data 0 Byte 2 + Data 0 Byte 3 + + Data N Byte 0 + Data N Byte									
		1 + Data	a N Byte	2 + Data	N Byte 3)						
读操作长度	_ 夏 N 等于 0 时	, V93XX	、只会向 N	MCU 发送	5个字节	的应答帧	į.					

7.5 写操作

- 支持对 1~16 个地址连续的寄存器进行写操作。
- 必须匹配正确的器件地址{A1, A0}。
- V93XX 会应答。

外部 MCU 对 V93XX 内 N 个寄存器进行写操作需要发送一个由 5xN+8 个字节组成的命令帧:收到信息后, V93XX 会向外部 MCU 发送一个由 1 个字节组成的应答帧。

图13. 写操作通讯协议

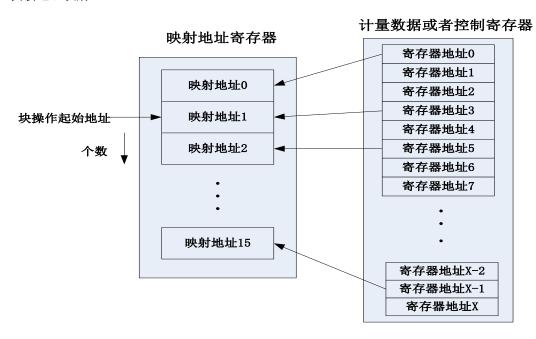
表58. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0		
1	HEADER	0	1	1	1	1	1	0	1		
			选择(N) 个 32 Bit	s 数据。							
2	CMD1		个 32 Bit			A1	A0	1	0		
		15: 写	16 个 32	Bits 数据							
3	CMD2	写操作起	已始地址	(D ₀)							
4	Data 0	写λ客和	写入寄存器(地址 D₀)的目标数据的 Bit[7:0]								
_	Byte 0	3/(1)1	1 44 (202	II. D0 > H1	H 1/1/3X 1/H	ט. יוום נון	ı,				
5	Data 0	写入寄花	写入寄存器(地址 D ₀)的目标数据的 Bit[15:8]								
	Byte 1		与八时作品(地址 D0)的自你数据的 Dil[10.0]								
6	Data 0 Byte 2	写入寄存	写入寄存器(地址 D ₀)的目标数据的 Bit[23:16]								
	Data 0										
7	Byte 3	写入寄存	字器(地址	止 D ₀)的	目标数据	的 Bit[31:	24]				
		校验和(校验和 0。计算方法:将上述 4 个目标数据字节(Data 0 Byte 0~3)								
		与CMD	1和CMI)2 按照字	2节累加护	并对累加和	进行取员	反操作再加	0x33		
8	CKSUM 0	后得到。	公式如	۲:							
		CKSUM	1 0 = 0x3	3 + ~ (C	MD1 + C	MD2 + Da	ata 0 Byte	e 0 + Data	a 0 Byte		
		1 + Data	a 0 Byte 2	2 + Data	0 Byte 3)					
5xN+4	Data N	写入寄存	字器(地址	և Dո=D₀-	+N)的目	标数据的	Bit[7:0]				
	Byte 0										
5xN+5	Data N Byte 1	写入寄存	字器(地址	止 D _N =D ₀ -	+N)的目	标数据的	Bit[15:8]				
	Data N										
5xN+6	Byte 2	写入寄存 	字器(地址	் D _N =D₀-	+N)的目	标数据的	Bit[23:16	6]			
5xN+7	Data N	写入客石	字器 (地七	ı⊦ D∧=Do-		标数据的	Bit[31:24	41			
OXIV-7	Byte 3						-	-			
		校验和 N (来自 MCU)。计算方法:将上述 4× (N+1) 个目标数据字									
			•			1和 CMD		节累加并	对累加		
5xN+8	CKSUM N	和进行即	Q反操作F	∮加 0x33	后得到。	公式如下	:				
		CKSUM N = 0x33 + ~ (CMD1 + CMD2 + Data 0 Byte 0 + Data 0 Byte 1 + Data 0 Byte 2 + Data 0 Byte 3 + + Data N Byte 0 + Data									
		_		-			+ Data	N Byte 0	+ Data		
		N Byte	1 + Data	N Byte 2	+ Data N	I Byte 3)					

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0
写操作长度	写操作长度 N 等于 0 时,MCU 只需要向 V93XX 发送前 8 个字节的命令帧。								

表59. 写操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0
		校验和	(来自 V93	BXX)。用·	于检验写技	操作是否质	成功。		
1	CKSUM 与 CKSUM N (来自 MCU) 相等,则本次写操作成功。								
		CKSUM	与 CKSU	IM N(来)	自 MCU)	不相等,	则本次写	燥作失败。	


7.6 块读操作

为了方便用户一次性读取所需要的数据,提高通信效率,V93XX 提供地址映射功能:用户将需要连续操作的数据项的地址映射到地址寄存器中,这样用户可以通过对地址寄存器进行操作来实现对不同地方的数据进行块读操作的功能。

最多可以映射 16 个数据寄存器的地址。

块读操作可以从映射地址寄存器的任意位置开始,如果地址加上读取个数超过缓存空间,则从头开始读取。比如从映射地址第 13 个开始读取 10 个数据,到了第 16 个地址之后,再从第 1 个开始继续读取 6 个地址的数据。

图14. 块读地址映射

特点如下:

● 支持对 1~16 个地址不连续的寄存器通过地址映射进行块读操作。

- 必须匹配正确的器件地址{A1, A0}。
- V93XX 会应答。

图15. 块读操作通讯协议

From Host	HEADER 0x7D CMD1 CMD2 CKSUM					
From V93XX		Data 0 Byte 0	Data 0 Byte 1	Data 0 Byte 2	Data 0 Byte 3	 CKSUM

表60. 块读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0				
1	HEADER	0	1	1	1	1	1	0	1				
		块读操作	卡长度选择	(N)									
		0: 读1	个 32 Bits	s 数据。									
2	CMD1	1: 读2	个 32 Bits	s 数据。		A1	A0	1	1				
		15: 读	16 个 32 E	Bits 数据。)								
						块读操作	的起始地址	选择(M))				
						16 个块读	地址通过。	4 个					
						SYS_BLK	X_ADDR	寄存器进行	亍设				
						置。							
						例如: 若 N=4 (长度为 5), M 为 4							
					(起始地)	址设置),!	设置),则从						
										SYS_BLK	(1_ADDR	寄存器的 [3it7~0
						ADDR4 🕸	的地址开	始读。则均	央读操作				
	CMD2	X*	X*	X*	X*	的5个寄	存器地址如	1下:					
3	CIVID2	X"	Α"	Α"	Α"	1: SYS_	BLK1_ADI	D Bit7~0 A	DDR4				
						存储的地	址						
						2: SYS_	BLK1_ADI	D Bit15~8	ADDR5				
						存储的地	址						
						3: SYS_	BLK1_ADI	D Bit23~16	3				
						ADDR6有	存储的地址						
						4: SYS_	BLK1_ADI	D Bit31~24	4				
						ADDR7有	存储的地址						
						5: SYS_	BLK2_ADI	O Bit7~0 A	DDR8				

顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0
						存储的地	让		
4	CKSUM	反操作再	手加 0x33	去:将 CM 后得到。 ~(CMD	公式如丁		字节累加并	对累加和证	进行取
*X可以	以是0或1。								

表61. 块读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0	
1	Data 0	从寄存是	と (抽 計・	{ ADDR _M)) 读出的	1目标数据				
'	Byte 0	//(14) [] [H (NONT)	(10011	J / (A) CH (1)	J [1] 1/J 3/4 3/1	נס. יוואם נוון			
2	Data 0	从寄存是	と (抽 計・	{ ADDR _M	3)	自目标数据	居的 Bit[15:8	31		
_	Byte 1	//(14) [] [H (NONT)	(10011	J / (A) CH (1)	J [1] 1/J 3/4 3/1	יים אם נון ו	-]		
3	Data 0	从寄存是	人寄存器(地址: { ADDR _M })读出的目标数据的 Bit[23:16]							
	Byte 2	//([]]] 1	n (Seser.	(/ LOUI (IVI	」 / 安田市	J 14 1/1 3X 1/1	1H1 DIL[20.	.0]		
4	Data 0	从寄存是	と (抽 計・	{ ADDR _M	3)	自目标数据	居的 Bit[31:2	241		
	Byte 3	//(14) [] [u (SGST)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J [1] 1/J 3/4 3/1	יין סואם נון נון נו]		
4xN+1	Data N	从寄存是	と (抽 計・	{ ADDR _M	-MJ)	的目标数	 :据的 Bit[7 :	01		
IXIV-1	Byte 0	//(-3 3	H (ADATT)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.	111 11 11.3	.vg n v Didi.	0 1		
4xN+2	Data N	从寄存器	器(地址:	{ ADDR _M	+N}) 读出	的目标数	 :据的 Bit[1 :	5:81		
17.1.1.2	Byte 1	// t.3 3 H	н (тыш.	(,		144 11 13:35	.vд н 7 —	,		
4xN+3	Data N	从寄存器	器(地址:	{ ADDR _M	+N}) 读出	的目标数	:据的 Bit[23	3:161		
in the contract of	Byte 2	// t.3 3		(184 19 19 29	. W H W [,		
4xN+4	Data N	从寄存器	器(地址:	{ ADDR _M	+N}) 读出	的目标数	ː据的 Bit[3 [*]	1:241		
	Byte 3	// t.3 3	,	(,	184 19 19 29				
		校验和。	计算方法	去:将上达	<u> </u>	-1) 个目标	标数据字节	Data 0	~N	
		Byte 0~	3,来自\	√93XX)	与 CMD1	和 CMD2	2(来自 MC	CU)按照	字节累	
4	OKOLIM	加并对复	累加和进行	亍取反操作	作再加 0 x	33 后得到]。公式如]	۲:		
4xN+5	CKSUM	CKSUM	I = 0x33 +	+ ~ (CMI	D1 + CME	D2 + Data	a 0 Byte 0 -	+ Data 0 I	Byte 1	
		+ Data (Byte 2 -	+ Data 0 I	Byte 3 + .	+ Dat	a N Byte 0	+ Data N	l Byte 1	
			•	+ Data N	•		•			
 	读操作长度 N 等于 0 时, V93XX 只会向 MCU 发送 5 个字节的应答帧。									
N JAN II - K	医探作长度 N 等于 U 时, V93XX 只会问 MCU 反达 5 个子卫的应合帜。									

8 串行外设接口(SPI)

8.1 概述

V93XX 支持 UART 和 SPI 两种通信模式,无需通过外部硬件跳线,可以切换 SPI 通信和 UART 通信。V93XX 发生片外输入 RSTN 复位、RX 复位或软复位后默认使用 UART 通信。如果希望使用 SPI 通信,都必须通过 SPI 协议进行一次 SPI 接口初始化。

支持总线模式,即输出数据口空闲时,为高阻态。通过 SPICSN 片选信号支持多个 V93XX 共用一根数据总线。

V93XX 的 SPI 接口是一个标准的 4 线或 3 线 SPI 接口, 4 线 SPI 模式每 2 次读写操作之间必须有 50µs 时间间隔, 3 线 SPI 模式片选管脚一直为低。SPI 采用低字节先发,高位先发,极性和相位 都是 0。

SPI 读取寄存器时,最大速度可为系统时钟的 1/4;读取 RAM 时,最大速度为系统时钟的 1/16。 MCU 读取 V93XX 的 RAM 或寄存器时,若 V93XX 未及时取到数据,V93XX 会发送错误的校验和字节给 MCU。

RAM 地址范围为 0x11~0x38, 0x43~0x54, 0x68, 0x69。其余地址为寄存器。

在进行 SPI 读写之前,需要向 0x7F 地址写 0x5A7896B4。如果不进行此操作,任何 SPI 通信会被 忽略。

当需要用 SPI 访问高 128 位地址寄存器(0x80 以上,包括 0x80)时,需要使用 SPI 向 0x7F 地址写入 0x4A985B67,之后所有的地址访问都会在原来给入的 7bit 地址上加上 128 的偏移,建议先用 SPI 将 0x80 以下的地址配置完毕后,再配置 0x80 以上的地址寄存器。

当向 0x7F 地址再次写入 0x76B589A4,表示取消地址自动偏移功能, SPI 能访问 0x80 以下的地址。

SPI 超时机制:通信时,每两个 SPCK 的上升沿之间的时间需小于 20ms (与系统时钟的准确度有关),否则认为发生一次 SPI 超时。

在下面的条件下, SPI 通信会发生异常。

表62. SPI 通讯异常

编号	条件	SPI_ERR 置 1	下次通信成功的条件
	SPI 超时(连续两个 SPCK 时钟上升沿之间的		无
1	时间大于 20ms(与系统时钟的准确度有	是	
	关))。		
2	4线 SPI 时钟数错误(不等于 48 个时钟)。	是	无

3	V93XX 发生复位	否	重新进行 SPI 接口初 始化
---	------------	---	--------------------

8.2 写操作

写操作完成后,V93XX 不会向 MCU 返回有效的应答,需要读回寄存器的值来确认写操作是否成功。

图16. SPI 写操作通讯协议

From Host CMD Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3 CKSUM

From V93XX


表63. 写操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0)

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0
1	CMD	写操作器	存器地址	-					0
2	Data Byte 0	写入寄存	字器的目标	数据的 B	it[7:0]				
3	Data Byte 1	写入寄存	字器的目标	数据的 B	it[15:8]				
4	Data Byte 2	写入寄存	写入寄存器的目标数据的 Bit[23:16]						
5	Data Byte 3	写入寄存	字器的目标	数据的 B	it[31:24]				
6	CKSUM	行取反搏	操作再加 0 = 0x33 +	x33 后得到	到。公式女	1下:	按照字节累 ata Byte 1 -		

8.3 读操作

图17. SPI 读操作通讯协议

读操作 MCU 向 V93XX 发送的命令帧结构(仅列出各字节的数据位 B7:B0) 表64.

顺序	字节	B7	В6	B5	B4	В3	B2	B1	В0		
1	CMD	读操作等	卖操作寄存器地址 1								
2	_*										
3	_*	MCU 产	MCU 产生 40 个时钟,用于接收 V93XX 回发的 5 个字节的应答帧。								
4	_*			居对操作ヲ				., ,,,,,			
5	_*	W.00 ///	CE1130	477	DW-110						
6	_*										
*- 该字	*- 该字节可以是任何值。										

表65. 读操作 V93XX 向 MCU 发送的应答帧结构(仅列出各字节的数据位 B7:B0)

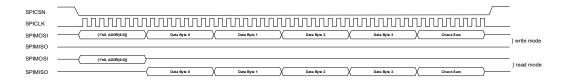
顺序	字节	В7	В6	B5	B4	В3	B2	B1	В0		
1	_*	MCU 向	V93XX 为	送送 CMD	时,MCU	接收的数	(据,不必)				
2	Data	从寄存品	寄存器读出的目标数据的 Bit[7:0]								
_	Byte 0	//(HJ J H	ч У Ш н 1 Г	11/1/3/4/1/11	, Dit[1.0]						
3	Data	从寄存器	以 读出的目	标数据的	J Bit[15:8]						
	Byte 1	77 C 3 13 H	3 X W 13 F	117.20.40	, בייני ייניי						
4	Data	从寄存器	関連出的 E	标数据的	I Bit[23:16	61					
	Byte 2	77 5 7 70	寄存器读出的目标数据的 Bit[23:16]								
5	Data	人 从寄存器	と は 出 的 し	标数据的	J Bit[31:24	1					
	Byte 3										
		校验和。	计算方法	生: 将上述	4个目标	数据字节	(Data Byt	e 0~3,茅	き自		
		V93XX)	与 CMD	(来自 M	CU)按照	字节累加	并对累加和	进行取反	操作再		
6	CKSUM	加 0x33	后得到。	公式如下	:						
		CKSUM	= 0x33 +	~ (CMD) + Data B	yte 0 + D	ata Byte 1	+ Data By	/te 2 +		
		Data By	te 3)								
*- 该气											

8.4 接口初始化

V93XX 默认的通讯接口是 UART,如果想要初始化 SPI 通信接口,需要向 0x7F 地址写 0x5A7896B4,即 MCU 必须通过 SPI 协议向 V93XX 发送如下 6 个字节数据:

表66. SPI 接口初始化数据(16 进制)

CMD	Data Byte 0	Data Byte 1	Data Byte 2	Data Byte 3	CKSUM
0xFE	0xB4	0x96	0x78	0x5A	0x18

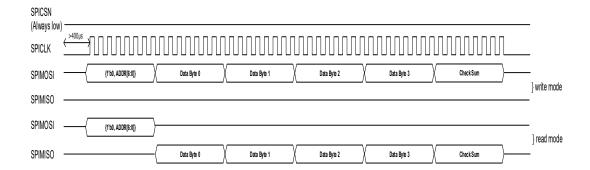

由于 SPI 写操作时,V93XX 不会向 MCU 回发有效的应答,在向 0x7F 地址写 0x5A7896B4 完成 SPI 接口初始化后不能直接确认该次初始化是否有效。建议对任一可读寄存器寄存器进行读操作,检查校验和字节是否正确来确认 SPI 接口初始化流程是否正确完成。

在 V93XX 发生片外输入 RSTN 复位、RX 复位或软复位后,SPI 接口会被复位,V93XX 恢复成 UART 通讯接口。此后进行 SPI 读写操作之前需要重新进行 SPI 接口的初始化流程。

8.5 4 线 SPI 模式

- V93XX 发生片外输入 RSTN 复位、RX 复位或软复位后都必须进行一次 SPI 接口初始化。
- 每2次读或写操作之间必须有50µs(与系统时钟的准确度有关)的时间间隔。
- 每次读或写操作的时钟数必须为48。
- 每次读或写操作完成后片选管脚必须拉回到高电平。

图18. 4线 SPI 通讯时序



8.6 3 线 SPI 模式

- V93XX 发生片外输入 RSTN 复位、RX 复位或软复位后都必须进行一次 SPI 接口初始化。
- 片选管脚一直为低电平。
- 每次读或写操作前时钟管脚必须拉低至少 400µs (与系统时钟的准确度有关)。
- 每次读或写操作的时钟数必须为48。

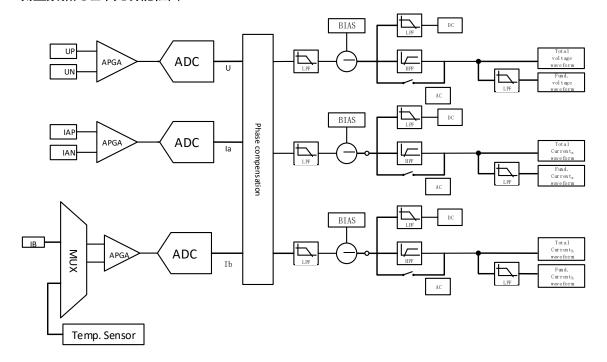
图19. 3 线 SPI 通讯时序

9 测量数据处理单元

9.1 概述

测量数据处理单元主要用于计算全波和基波有功功率、全波和基波无功功率、全波视在功率、全波和基波有效值,并提供电网事件监测和波形缓存功能。

能量累加器可灵活配置,提供2个高速能量累加器和6个低速能量累加器。


波形数据可通过 DMA 输出,也可以通过波形缓存存在本地。

9.2 特点

- 支持 1 路电压和 2 路电流同时计量。
- 全波带宽可选。
- 提供两个可配置的基波通道,基波通道可配置为计算基波功率或基波有效值。
- 平均功率值或平均有效值的刷新时间可选
- 提供 10 个周波或 12 个周波的平均有效值用于电压闪变检测。
- 支持启动潜动、电压骤升骤降、过压欠压、过流欠流判断。

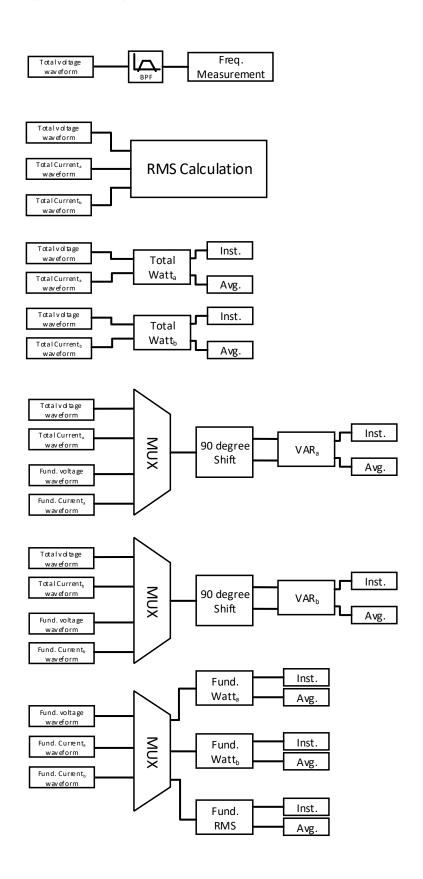
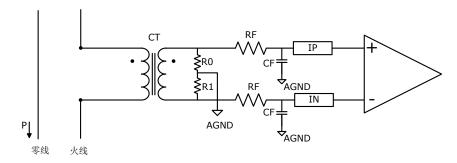

9.3 功能框图

图20. 测量数据处理单元功能框图 1

图21. 测量数据处理单元功能框图 2



9.4 模拟信号输入

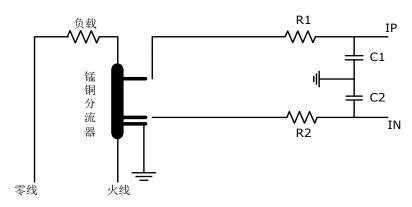
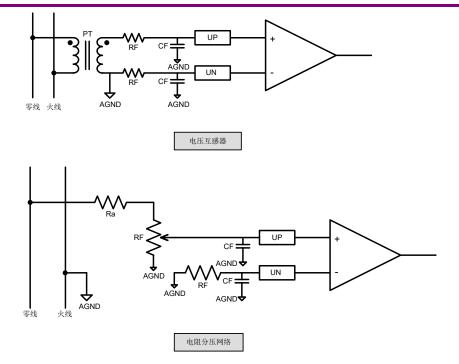

V93XX 支持 2 种电流信号输入。其中,电流传感器(CT,Current Transformer)输入电流采用双端完全差动输入方式,共需要占用 4 个端口,接线方式如下图所示(以 AGND 为共模电压,共模电压也可以为其他形式)。IP、IN 是电流通道的差分输入引脚,4 个端口分别为电流通道 IA 的 IAP、IAN,以及电流通道 IB 的 IBP、IBN。

图22. 采用 CT 输入电流

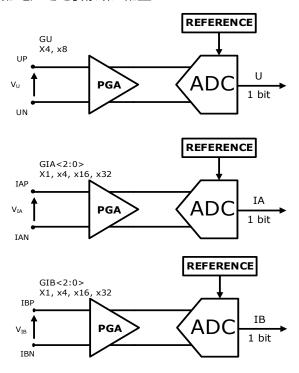
也可以采用锰铜电阻分流网络输入电流,采用 AGND 接地。


图23. 采用锰铜电阻分流网络输入电流

V93XX 支持 1 路电压信号输入。电压采用伪差分输入方式,相对于 UN 接地,UP 为正端,共需要 2 个端口,下面为电压通道的两种典型接法,分别采用电压互感器方式和电阻分压方式。

图24. 电压输入方式

V93XX 三个差分输入通道的电压输入范围是±200mV(幅值),模数转换器(以下简称 ADC)的满量程输入范围是±1.1V,所以,片外输入电压与模拟增益(PGA)的乘积不能超过±1.1V。电流通道 IA 和 IB 的信号输入来自锰铜或电流传感器(CT),电压通道的信号输入来自电阻分压或电压传感器(PT),为了使传感器输出信号与 ADC 之间的量程相匹配,用户可通过设置模拟控制寄存器1(0x01,ANA_CTRL1)对电流和电压通道进行模拟增益配置。


表67. 电压/电流通道模拟增益配置

寄存器	位	默认值	说明
模拟控制寄存器 1 (0x01,	Bit[14:12] GIB<2:0>	0	B 路电流 ADC 增益。 000: 4; 001: 1; 010: 32; 011: 16; 100/101/110/111: 禁止 正常工作下, GIB<2:0>建议设置为 000。
ANA_CTRL1)	Bit11 GU	0	电压 ADC 增益。 0: 8; 1: 4 正常工作下,该 Bit 建议设置为 0。

寄存器	位	默认值	说明
			A 路电流 ADC 增益。
			000: 32;
	Bit[10:8] GIA<2: 0>	0	001: 16;
			010: 4;
			011: 1:
			100~111: 禁止
			正常工作下,GIA<2:0>建议设置为 000。

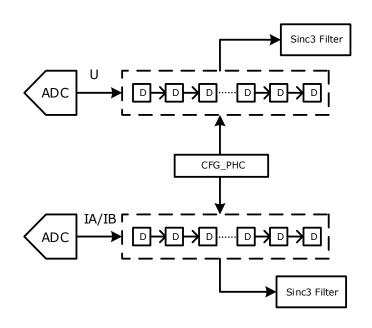
图25. 电流/电压通道模拟增益配置

9.5 模拟数字转换

V93XX 中的电压/电流通道 ADC 都采用的是二阶的 Σ/ΔADC 结构,其满量程输入范围是 ±1100mV。用户可通过 ADCUEN、ADCIBEN、ADCIAEN(计量控制寄存器 0(0x02,DSP_CTRL0))开启或关闭各路通道的 ADC。

需要注意的是,各通道 ADC 和测量数据处理单元使用同一个控制位控制开启或关闭。

表68. 开关电压/电流通道 ADC


寄存器	位	默认值	说明
计量控制寄存	Bit2	0	电压通道开关(包括 ADC 和 DSP)。
11 至江州可仁	ADCUEN	0	TALLETA (CALABOTA DOI /)

寄存器	位	默认值	说明
器 0(0x02, DSP_CTRL0)	Bit1 ADCIBEN	0	电流 B 通道开关(包括 ADC 和 DSP)。
	Bit0 ADCIAEN	0	电流 A 通道开关(包括 ADC 和 DSP)。

9.6 角差校正

图26. 角差校正原理图

角差校正的原理是在电压和电流通道上引入固定长度的延迟链,根据电压和电流之间的相位超前或 滞后关系,选择电压被延迟或电流被延迟,因此角差校正的最小分辨率就是延迟链上两个相邻单元 之间的相位差,而总的角差校正角度是最小分辨率与延迟链的长度之积。

角差校正默认关闭。用户可通过配置角差校正寄存器(0x33,DSP_CFG_PHC)开启角差校正功能,只要该寄存器值非零开启角差校正自动开启。

在 V93XX 中,当角差校正电路的采样频率(f_{smpl})为 3.2768MHz 时,角差校正的分辨率是 0.0055°/lsb,总校正量为±4.21875°。角差校正电路的采样频率(f_{smpl})由 DSP_MODE <3:0>位(计量控制寄存器 0(0x02,DSP_CTRL0))的配置决定。

表69. 不同 fsmpl 下的角差分辨率和校正范围

DSP_MODE	fsmpl	calibration_accuracy degree)	Calibration_range degree)
0x00, 0x01, 0x02	6.5536MHz	0.005493164	±4.21875
0x06, 0x07	3.2768MHz	0.010986328	±8.4375

0x08	819.2KHz	0.021972656	±16.855

IA 角差校正值 phc_ia = 待校正角度/calibration_acuracy

IB 角差校正值 phc_ib = 待校正角度/calibration_acuracy

IA 角差校正值和 IB 角差校正值以补码形式组合后写入角差校正寄存器(0x33,

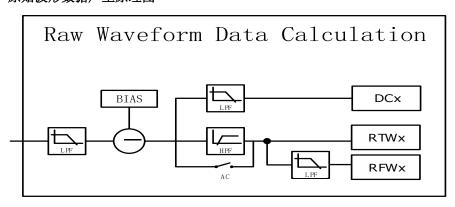

DSP CFG PHC).

表70. 角差校正值配置

寄存器	位	默认值	说明
角差校正寄存器	Bit[26:16] CFG_PHCB	0	角差校正寄存器。该寄存器需要参与参数配置 自检校验。 B 通道角差校正值。
(0x33, DSP_CFG_PHC)	Bit[10:0] CFG_PHCA	0	其范围为-766~767。 角差校正寄存器。该寄存器需要参与参数配置自检校验。 A 通道角差校正值。 其范围为-766~767。

9.7 原始波形数据产生

图27. 原始波形数据产生原理图

过采样 Σ/Δ ADC 输出 1bit 码流伴有大量的高频噪声,通常用低通滤波器[CIC 抽取滤波器 (Decimation Filter)]来抑制该噪声,并将 ADC 采样频率降低 256 倍。

每个 ADC 通道可以产生直流原始瞬时数据和全波交流原始瞬时数据和基波交流原始瞬时数据。

当配置 DC_METER_MODE(计量控制寄存器 0 (0x02, DSP_CTRL0))为 1 的时候,可以支持直流计量。

用户可通过 ADCUEN、ADCIBEN、ADCIAEN(计量控制寄存器 0(0x02,DSP_CTRL0))开启

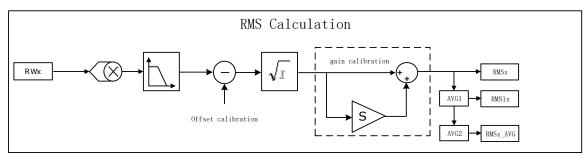
或关闭各路通道的 ADC。需要注意的是,各通道 ADC 和数字处理是使用同一个控制位,所以是同时开启和关闭的。

表71. 开关电压/电流通道 ADC

寄存器	位	默认值	说明
	Bit27 DC_METER_MODE	0	直流计量模式开关。 0: 关闭; 1: 打开
计量控制寄存 器 0(0x02, DSP_CTRL0)	Bit2 ADCUEN	0	电压通道开关(包括 ADC 和 DSP)。
	Bit1 ADCIBEN	0	电流 B 通道开关(包括 ADC 和 DSP)。
	Bit0 ADCIAEN	0	电流 A 通道开关(包括 ADC 和 DSP)。

经 CIC 滤波器处理的信号,再经过高通滤波器,滤除传感器和 ADC 可能引入的直流分量。在 V93XX 中,高通滤波器可被旁路。当用户想要更快的响应时间的时候,可以旁路高通滤波器。

用户可通过 BGP_U (计量控制寄存器 1 (0x03, DSP_CTRL1))对电压信号进行数字增益配置,从而增大小信号输入下对截断噪声的抑制能力。

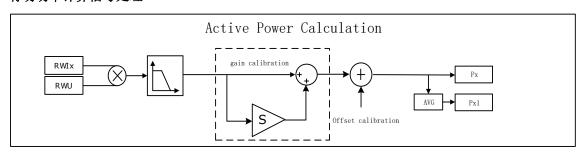

表72. 计量通道信号数字增益配置

寄存器	位	默认值	说明
计量控制寄存	Dit04		电压通道数字 PGA:
器 1(0x03,	Bit21 PGA U	0	0: X1;
DSP_CTRL1)	FGA_U		1: X4

原始波形数据可以用于有效值计算、功率计算、线电压频率测试、相位测试、波形存储、波形数据输出、电信号监测等。

9.8 有效值计算和校正

图28. 电流/电压有效值计算信号处理

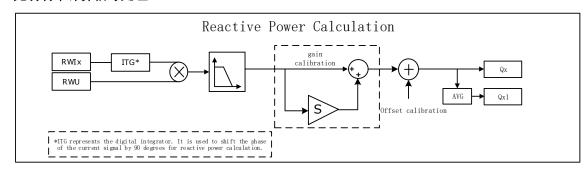


电流/电压有效值计算的信号流如上图所示。来自电流/电压信号原始波形信号首先自相关相乘,其乘积含有 2 次谐波,经过低通滤波器后可滤除谐波和噪声引起的纹波,再经过 Offset 校正去除噪声后,得到电流/电压的平方,然后再做开平方运算,得到 32 位有效值数据,该数据经过比差校正后,存于瞬时电压/电流有效值寄存器。

用户可在有效值比差寄存器中设置电压/电流有效值的比差校正值。比差校正后的有效值数据存于电压/电流有效值寄存器,该数据会进行平均,平均后的值存于电压/电流有效值平均值寄存器。提供 10 个周波或 12 个周波的平均有效值用于电压闪变检测。上述所有寄存器均为 32 位补码数据。该瞬时电流有效值可以用于后续的能量累加,瞬时电压有效值可以用于后续的电压骤升骤降。

9.9 有功功率计算和校正

图29. 有功功率计算信号处理



电流和电压原始波形信号相乘,其乘积经过低通滤波器后可滤除谐波和噪声引起的纹波,得到 32 位有功功率数据,该数据经过 offset 校正后,再经过比差校正,存于瞬时 PA 或 PB 功率寄存器,可以参与后续的能量累加。

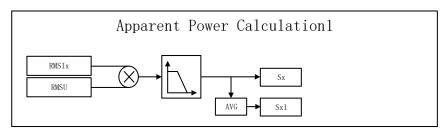
比差校正后的有功功率数据会进行平均,存于PA1或PB1功率平均值寄存器。

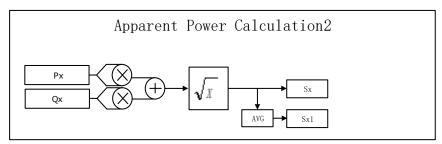
9.10 无功功率计算和校正

图30. 无功功率计算信号处理

电流原始波形信号经过希尔伯特滤波器滤波调整 90°相位后和电压原始波形信号相乘,其乘积经过低通滤波器后可滤除谐波和噪声引起的纹波,得到 32 位无功功率数据,该数据经过 offset 校正后,再经过比差校正,存于瞬时 QA或 QB功率寄存器,可以参与后续的能量累加。

无功功率来源是全波数据和基波数据两种,通过 QB_MODE 和 QA_MODE 选择(计量控制寄存器 0(0x02,DSP_CTRL0)。


表73. 无功功率模式选择


寄存器	位	默认值	说明
计量控制寄存 器 0 (0x02,		0	无功功率 B 模式选择。0: 全波无功;1: 基波无功
DSP_CTRL0)	Bit18 QA_MODE	0	无功功率 A 模式选择。0: 全波无功;1: 基波无功

比差校正后的无功功率数据会进行平均,存于 QA1 或 QB1 功率平均值寄存器。

9.11 视在功率计算

图31. 视在功率计算信号处理

视在功率有两种计算方法:通过有效值计算,通过功率值计算。

瞬时电压/电流有效值用于视在功率计算:

$$S = Irms \times Urms$$

其中,

S 为视在功率;

Irms 为瞬时电流有效值;

Urms 为瞬时电压有效值。

瞬时有功功率和无功功率用于视在功率计算:

$$S = \sqrt{P^2 + Q^2}$$

其中,

- S 为视在功率;
- P 为瞬时有功功率值;
- Q为瞬时无功功率值。

计算得到的瞬时视在功率,存于瞬时视在功率寄存器 S 中,可以参与后续的能量累加。瞬时视在功率经过求平均运算,得到平均视在功率,存于平均视在功率寄存器 S1 中。上述寄存器为 32 位 补码数据。

视在功率计算方法,通过 S_MODE 选择(计量控制寄存器 0(0x02, DSP_CTRL0)。

表74. 视在功率计算源选择

寄存器	位	默认值	说明
计量控制寄存	D:10.4		视在功率计算源选择。
器 0(0x02,	Bit24 S MODE	0	0: 通过有效值计算;
DSP_CTRL0)	3_WODE		1: 通过功率值计算

9.12 功率启动潜动判断

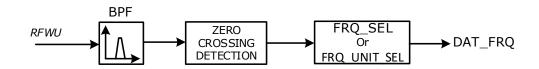
有功功率、无功功率、视在功率支持启动潜动功能。相关寄存器见功率潜动阈值寄存器。功率潜动潜动判断采用连续3次平均值与阈值比较,低于下限阈值,则认为此时处于潜动状态; 高于上限阈值时,进入启动状态。该功能默认关闭,可以通过配置PWR_CRP_EN(计量控制寄存器1(0x03,DSP_CTRL1))开启。

当 A 通道和 B 通道的瞬时有功功率/无功功率/视在功率增大,当连续三次高于上限阈值时,进入启动状态。当 A 通道和 B 通道的瞬时有功功率/无功功率/视在功率减少,当连续三次低于下限阈值时,进入潜动状态。

用户可通过 SYS_STS 系统状态寄存器描述(0x74,SYS_STS)的 Bit17~Bit12 查看瞬时有功功率/无功功率/视在功率是否处于潜动状态。

表75. 功率启动潜动开关和状态

寄存器	位	默认值	说明
计量控制寄存	Bit1 PWR CRP EN		功率潜动判断使能。
器 1(0x03,		0	0: 关闭潜动判断;
DSP_CTRL1)	TWIC_OIN _EIN		1: 使能潜动判断
	D#47		B通道视在功率潜动状态位。
	Bit17 SBCREEP	0	0: 启动状态;
	SBOKELI		1: 潜动状态
	Ditac		B通道无功功率潜动状态位。
	Bit16 QBCREEP	0	0: 启动状态;
	QBCREEP		1: 潜动状态
	Ditte		B通道有功功率潜动状态位。
SYS_STS 系统	Bit15 PBCREEP	0	0: 启动状态;
状态寄存器描			1: 潜动状态
述(0x74,	Bit14 SACREEP		A 通道视在功率潜动状态位。
SYS_STS)		0	0: 启动状态;
			1: 潜动状态
	D::40		A 通道无功功率潜动状态位。
	Bit13 QACREEP	0	0: 启动状态;
	QACKEEF		1: 潜动状态
	D:440		A 通道有功功率潜动状态位。
	Bit12 PACREEP	0	0: 启动状态;
			1. 潜动状态


表76. 功率潜动阈值寄存器

地址	寄存器	R/W	数据格式	说明
Over	DCD OV TUI	DAM	32-Bit 补	A 通道和 B 通道的瞬时有功功率/无功功率/视在功
0x55 DSP_OV_THL	R/W	码	率的潜动判断下限阈值	
0,450	050		32-Bit 补	A 通道和 B 通道的瞬时有功功率/无功功率/视在功
0x56 DSP_OV_THH	R/W	码	率的潜动判断上限阈值	

9.13 线电压频率测量

图32. 线电压频率测量原理

V93XX 支持线电压频率测量, 频率的测量范围是 35Hz~75Hz。频率测量值存于电网频率寄存器 (0x21, DSP_DAT_FRQ)。支持数字模式频率测量和模拟模式频率测量, 通过配置计量控制寄存器 6(0x80, DSP_CTRL6)的 FRQ_ANA_ON 选择测量模式。

数字模式频率测量实现原理是电压原始基波波形信号经过一个中心频率为 50Hz 的带通滤波器(该滤波器在 150Hz 有 25dB 衰减)进行滤波,然后对滤波输出的信号做过零点检测,经过 16 个信号周期平均后输出频率测量结果。线电压频率测量的分辨率可达到 0.05Hz/lsb,用户需要根据不同的 DSP_MODE(计量控制寄存器 0(0x02,DSP_CTRL0))配置,配置带通滤波器系数,具体见带通滤波器系数寄存器(0x37,DSP CFG BPF)说明。

模拟模式频率测量实现原理是通过原始模拟信号输入模拟过零比较器获得与待测波形频率一致的方波,再经过同步去抖,然后通过系统时钟对其计数,从而获得频率值。该测量方法精度更高,频率精度取决于系统时钟,计数结果误差最大为1个系统时钟周期。

用户通过计量控制寄存器 0(0x02,DSP_CTRL0)的 FRQ_SEL 和计量控制寄存器 6(0x80,DSP_CTRL6)的 FRQ_UNIT_ON 和 FRQ_UNIT_SEL 配置频率测试累加周波个数。通过计量控制寄存器 0(0x02,DSP_CTRL0)的 DSP_MODE 和计量控制寄存器 6(0x08,DSP_CTRL6)的 FRQ_UNIT_ON 配置频率常数。

表77. 线电压频率测量寄存器

寄存器	位	默认值	说明
计量控制寄存 器 0(0x02, DSP_CTRL0)	Bit[29:28] FRQ_SEL 0		DSP_DAT_FRQ 寄存器值来源(具体时间与系统时钟的准确度有关)。 00: 16 个周波的电网频率测试值的累加值(默认是 320ms 刷新)。 01: 1 个周波的电网频率测试值(默认是 20ms 刷新)。 10: 64 个周波的电网频率测试值的累加值(默认是 1280ms 刷新)。 11: 保留。
计量控制寄存 器 6(0x80, DSP_CTRL6)	Bit17 FRQ_ANA_ON	0	频率测量来源 0: 采用数字频率测量方式 1: 采用模拟测频率的方式
	Bit16 FRQ_UNIT_ON	0	数字测量频率单位决定开关 0: 依然由 FRQ_SEL 决定测量单位 1: 由 FRQ_UNIT_SEL 决定测量频率单位 此开关只作用于数字测量频率平均周期选择。模 拟测量频率平均周期选择只和 FRQ_UNIT_SEL 相关。
	Bit[15:12] FRQ_UNIT_SEL	0	数字/模拟测量频率平均周期选择 0: 1 个周波平均频率 1: 2 个周波平均频率 15:16 个周波平均频率

线电压频率值直接从电网频率寄存器(0x21, DSP_DAT_FRQ)中读出,一般无需校准。根据线电压频率,用户可直接计算得到信号频率:

f = wave cnt * freq const/DSP DAT FRQ

其中,

f: 信号频率, Hz;

wave_cnt: 周波个数;

freq_const: 频率常数, Hz;

DSP_DAT_FRQ:频率值寄存器的值(以十进制计)。频率值寄存器的值为16位无符号正数。

当配置频率控制寄存器(0x80,DSP_CTRL6),选择模拟测量频率的方式,可通过配置选择指定周期的平均频率存入电网频率寄存器,计算公式与上述电网频率相同,其中 wave_cnt 需要更换为指定周期的单位,比如配置 4 个周期的平均频率,那么 wave_cnt=4。

表78. 频率计算波形个数描述

FRQ_ANA_ON	FRQ_UNIT_ON	FRQ_SEL	FRQ_UNIT_SEL	wave_cnt
0	0	0	*	16
0	0	1	*	1
0	0	2	*	64
0	1	*	0	1
0	1	*	1	2
0	1	*	2	3
0	1	*	3	4
0	1	*	4	5
0	1	*	5	6
0	1	*	6	7
0	1	*	15	16
1	*	*	0	1
1	*	*	1	2
1	*	*	2	3
1	*	*	3	4
1	*	*	4	5
1	*	*	5	6
1	*	*	6	7
1	*	*	15	16

表79. 频率常量 Frequency constant 描述

DSP_MODE	FRQ_ANA_ON	freq_const
0x08	0	1600
0x06, 0x07	0	3200
0x0, 0x01, 0x02	0	6400
0x08	1	1638400
0x06, 0x07	1	3227800
0x0, 0x01, 0x02	1	6553600

在信号频率增大的时候,频率值寄存器输出值线性减小;在信号频率减小的时候,频率值寄存器输

出值线性增大。

9.14 相位测量

V93XX 支持电压相位和一路电流相位测量功能。相关寄存器见相位测量寄存器。工作原理:通过往寄存器 DSP_PHS_STT(0x61)写 1,即启动相位测量命令,V93XX 开始以一定频率进行计数,直到判断该信号过零点事件发生,停止计数,将此计数值写入相位寄存器,并且记录过零点前后两个信号采样值以便于用户做插值运算,获得更高精度的相位值。

计数频率与 DSP_MODE 有关。DSP_MODE 为 0, 1, 2 时, 用于相位测试的计数频率是 6.4KHz; DSP_MODE 为 6, 7 时, 用于相位测试的计数频率是 3.2KHz。

电流相位测量一次只支持 IA 通道或 IB 通道,可配置。该通道选择与电流过零点输入源一致。电流过零点输入源通过 PHSI_SEL (计量控制寄存器 1 (0x03,DSP_CTRL1))选择 IA 通道或 IB 通道。过零点事件检测方式可以通过 SIGN_SEL (计量控制寄存器 1 (0x03,DSP_CTRL1))选择负向过零点或正向过零点。

表80. 过零点选择

寄存器	位	默认值	说明
	Bit20 PHSI_SEL	0	电流过零点输入源选择: 0: 电流 IA 通道; 1: 电流 IB 通道
计量控制寄存 器 1(0x03, DSP_CTRL1)	Bit[19:18] SIGN_SEL	0	过零点事件检测方式选择。 0: 负向过零点(信号从正信号变成负信号认为发生一次过零点事件)。 1: 正向过零点(信号从负信号变成正信号认为发生一次过零点事件)。 2: 正向和负向过零点。 3: 关闭过零点检测功能。

9.15 校表

请参考《V93xx 样表校表方法-应用笔记 V1.4》。

10 波形主动上传与缓存

V93XX 波形数据可通过 DMA 传输出去,或者通过波形缓存存在本地。触发方式支持命令触发和事件触发。

10.1 波形主动上传

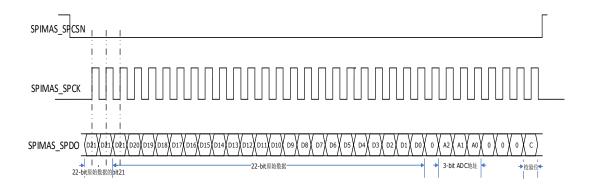
10.1.1 概述

V93XX 支持 DMA 模式的数据传输方式,并通过 SPI 接口主机模式向外部 MCU 发送最大 3 路原始 波形数据。用户可以通过计量控制寄存器 5(0x07,DSP_CTRL5)进行主动波形上传的相关设置,通过 IO 配置寄存器 0(0x7D,SYS_IOCFG0)和 IO 配置寄存器 1(0x7E,SYS_IOCFG1)配置主动波形数据上传 IO 口 P0~P6。

当 DSP_CTRL6 的 Bit[31]未打开时,DMA 发送数据的每周波采样点数与计量控制寄存器 0 (0x02,DSP_CTRL0) 的 DSP_MODE (Bit[7:4]) 是相同的点数,当 DSP_CTRL6 的 Bit[31]打开后,主动上传的点数为 DSP_MODE 的点数的对应倍数;通道数量与计量控制寄存器 5 (0x07,DSP_CTRL5)的 Bit10~8 相关。其关系如下表所示:

表81. 主动波形数据上传配置

DSP_MODE 配置	DSP_CTRL5 Bit10~8(2 进制)配 置	DSP_CTRL6 (2 进制)配 置[31:29]	通道数量	每周波采 样点数	SPI时钟频率
0 或 10~15	111	000	3	128	819.2KHz
0 或 10~15	111	100	3	128	819.2KHz
0 或 10~15	111	101	3	64	819.2KHz
0 或 10~15	111	110	3	32	819.2KHz
0 或 10~15	011 或 101 或 110	000	2	128	819.2KHz
0 或 10~15	011 或 101 或 110	100	2	128	819.2KHz
0 或 10~15	011 或 101 或 110	101	2	64	819.2KHz
0 或 10~15	011 或 101 或 110	110	2	32	819.2KHz
0 或 10~15	001或010或100	000	1	128	409.6KHz
0 或 10~15	001或010或100	100	1	128	409.6KHz
0 或 10~15	001或010或100	101	1	64	409.6KHz
0 或 10~15	001或010或100	110	1	32	409.6KHz
1或6	111	000	3	64	409.6KHz
1或6	111	100	3	64	409.6KHz



1或6	111	101	3	32	409.6KHz
1或6	011 或 101 或 110	000	2	64	409.6KHz
1或6	011 或 101 或 110	100	2	64	409.6KHz
1或6	011 或 101 或 110	101	2	32	409.6KHz
1或6	001或010或100	000	1	64	204.8KHz
1或6	001或010或100	100	1	64	204.8KHz
1或6	001或010或100	101	1	32	204.8KHz
2或7	001~111	000	1、2、3	32	204.8KHz

10.1.2 时序和格式

V93XX 可通过 DMA SPI 接口向外围器件传输信号的原始波形。SPI 极性和相位可配置,当极性为 0、相位为 0 的时候传输时序如下图:

图33. DMA SPI 传输时序

传输方式: 一次完成 32-Bit 数据的传送,每次传输的数据帧格式如下表所示:

表82. 主动波形上传数据格式

Bit	内容
31	同 Bit29 值
30	同 Bit29 值
29:8	各通道 ADC 信号原始波形数据,22-Bit
7	0
	指示当前波形数据是否来自电压通道
6	0: 否;
	1: 是
5	指示当前波形数据是否来自 IA 通道

	0: 否;
	1: 是
	指示当前波形数据是否来自 IB 通道
4	0: 否;
	1: 是
3:1	000
0	奇偶校验位,校验范围为前 31 位

10.2 波形缓存

波形缓存功能开启之后,波形数据存储在 RAM 中,支持单通道波形数据存储和双通道波形数据同时存储模式。如果同时使能三个通道的波形缓存,IB 通道无效。用户可以通过计量控制寄存器 5(0x07,DSP_CTRL5)配置波形缓存相关配置以及开启和结束条件选择,当 DSP_CTRL6 的Bit[31]未打开时,波形缓存的每周波采样点数与计量控制寄存器 0(0x02,DSP_CTRL0)的DSP_MODE(Bit[7:4])是相同的点数,当 DSP_CTRL6 的 Bit[31]打开后,波形缓存的点数为DSP_MODE 的点数的对应倍数。波形缓存配置完成后,用户可以通过系统中断状态寄存器(0x72,SYS_INTSTS)的 WAVE_STORE 查看波形缓存是否完成。完成后,用户可以通过重复读取波形数据寄存器(0x69,DAT_WAVE)获取波形缓存数据,每次最多可读取 309 个数据。

表83. 波形缓存数据格式

通道	高 16Bit	低 16Bit
IA	IADATA _{2n+1}	IADATA _{2n}
IB	IBDATA _{2n+1}	IBDATA _{2n}
U	UDATA _{2n+1}	UDATA _{2n}
IA+IB	IBDATA _n	IADATA _n
IA+U	IADATA _n	UDATA _n
IB+U	IBDATA _n	UDATA _n
IA+IB+U(此时 IB 自动	IADATA _n	LIDATA
失效)	IADATA	UDATA _n

其中: n 值范围: 0~308

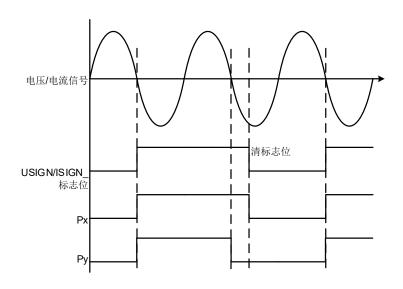
11 电信号监测

11.1 过零点检测

V93XX 支持电压通道过零点检测和电流通道(可通过计量控制寄存器 1(0x03,DSP_CTRL1)的 Bit20 选择过零点通道为 IA 或者 IB 通道)过零点检测。可通过计量控制寄存器 1(0x03,DSP_CTRL1)的 Bit19~Bit18 选择过零点方向。当电压/电流通道信号发生过零点事件时,系统中断状态寄存器(0x72,SYS_INTSTS)电压过零点标志位 USIGN/电流过零点标志位 ISIGN 会置 1。用户需要写 1 清零。

使能电压/电流过零点中断输出时,即系统中断使能寄存器(0x73,SYS_INTEN)的 USIGN/ISIGN 置 1,通过配置 IO 配置寄存器 0(0x7D,SYS_IOCFG0)或 IO 配置寄存器 1(0x7E,SYS_IOCFG1)配置电压/电流过零点中断输出。引脚 Px 的输出电平自动根据电压过零点标志位 USIGN/电流过零点标志位 ISIGN 翻转。

过零点检测精度与采样点数选择有关,如果是一个周波 128点,则精度为 360/128。


通过配置 IO 配置寄存器 0(0x7D,SYS_IOCFG0)或 IO 配置寄存器 1(0x7E,SYS_IOCFG1)配置电压/电流过零点输出方波。引脚 Py 的输出电平自动根据电压/电流过零点状态实时翻转。每发生一次过零点事件,IO 口翻转一次。

电压/电流过零点检测,支持电压/电流阈值检测功能,防止无效输入时过零点误判。通过开启控制寄存器 6(0x80,DSP_CTRL6),并写入要检测的阈值到寄存器中(电压为 0x94,ZERO_TH,电流 0x95,ZERO_TH_I),系统将自动对比电压/电流瞬时有效值是否超过阈值,如果未超过阈值,将被判定为无效输入,电压/电流过零点的中断输出和过零点输出都将被屏蔽,直到电压/电流瞬时有效值超过阈值或关闭阈值检测功能。

下图配置为使能过零点中断输出,过零点检测方式选择为负向过零点时,USIGN/ISIGN标志位、过零点中断输出以及过零点输出方波波形。

图34. 电压/电流过零点输出图

11.2 电压骤升骤降

V93XX 可以通过编程的方式来指示电压骤升骤降。相关寄存器见表 29。

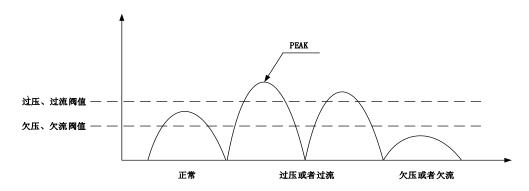
当电压有效值连续 N(单位可通过电压骤升骤降寄存器配置(0x8f,DIP_SWELL_CTRL))个半周波高于电压骤升阈值上限时,电压骤升状态位(SYS_STS 系统状态寄存器描述(0x74,SYS_STS)的 USWELL)置为 1。同时电压骤升标志位(系统中断状态寄存器(0x72,SYS_INTSTS)的 USWELL)置为 1,该标志位写 1 清零。

当电压有效值连续 N(单位可通过电压骤升骤降寄存器配置(0x8f,DIP_SWELL_CTRL))个半周波低于电压骤升阈值下限时,电压骤升状态位(SYS_STS 系统状态寄存器描述(0x74,SYS_STS)的 USWELL)恢复为 0,同时电压骤升结束状态位(0x8F,DIP_SWEL_CTRL 的Bit[31])置为 1,该标志位写 1 清 0。

当电压有效值连续 N(单位可通过电压骤升骤降寄存器配置(0x8f,DIP_SWELL_CTRL))个半周波低于电压骤降阈值下限时,电压骤降状态位(SYS_STS 系统状态寄存器描述(0x74,SYS_STS)的 UDIP)置为 1。同时电压骤降标志位(系统中断状态寄存器(0x72,SYS_INTSTS)的 UDIP)置为 1,该标志位写 1 清零。

当电压有效值连续 N(单位可通过电压骤升骤降寄存器配置(0x8f,DIP_SWELL_CTRL))个半周波高于电压骤降阈值上限时,电压骤降状态位(SYS_STS 系统状态寄存器描述(0x74,SYS_STS)的 UDIP)恢复为 0,同时电压骤降结束状态位(0x8F,DIP_SWEL_CTRL 的Bit[30])置为 1,该标志位写 1 清 0。

通过读寄存器 DAT_SWELL_CNT/DAT_DIP_CNT 获取电压骤升/骤降时间记录,读取 SWELL_REG_MAX_CNT/DIP_REG_MIN_CNT 可以获取电压骤升达到最大值/骤降达到最小值时



的时间记录。24Bit 有效。向该寄存器写任意值,可清零该计数值。

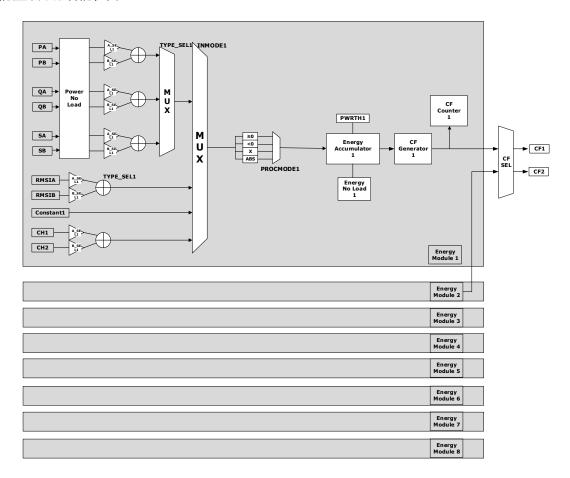
通过读取寄存器 SWELL_REG_MAX/DIP_REG_MIN 可以获取电压骤升/骤降的过程中最大值/最小值的记录。

电压骤升中断和电压骤降中断标志可以通过配置 IO 口输出,具体见 IO 配置寄存器 0(0x7D,SYS_IOCFG0)和 IO 配置寄存器 1(0x7E,SYS_IOCFG1)。

11.3 过压欠压和过流欠流

V93XX 可以通过编程的方式来指示 U 通道过压欠压、IA 通道过流欠流以及 IB 通道过流欠流。相关寄存器见快速检测阈值寄存器。用户可以通过计量控制寄存器 4(0x06,DSP_CTRL4)的 FDUEN、FDIAEN、FDIBEN 分别开启 U 通道过压欠压、IA 通道过流欠流以及 IB 通道过流欠流检测。检测源支持过高通滤波器和不过高通滤波器两种。过压或欠压/过流或欠流检测时间长度可选择。具体说明如下:

- 1. 支持对三路 ADC 进行波形监测。
- 2. 每一路 ADC 波形监测具有两个阀值:上限阀值(过压、过流);下限阀值(欠压、欠流)
- 3. 超上限阀值采样点数:比如设置值为 4,表示如果半个周波采样点中有大于 4 个点超过阀值,则认为该半周波波形超限。
- **4**. 超上限阀值半周波数:比如设置为 **2**,表示如果连续有两个半周波都超限,则认为过压或者过流事件发生。
- 5. 低于下限阀值采样点数:比如设置为 4,如果发现半个周波采样点中小于或等于 4 个点高于下限阀值,则认为该半波低于下限。
- 6. 低于下限值半波数: 比如设置为 2,表示如果连续有两个半周波都低于下限,则认为欠压或者 欠流事件发生。
- 7. 当事件发生时,产生标志位,用户可以通过事件相应状态位(SYS_STS 系统状态寄存器描述(0x74, SYS_STS))和标志位(系统中断状态寄存器(0x72, SYS_INTSTS))查看。
- 8. 相应事件标志可以通过配置中断使能以及 IO 口输出。



9. 响应时间: 当设置为半波数为 1 时,开启或关闭高通滤波器的情况下,响应时间: 10ms (与系统时钟的准确度有关),即当输入信号超过阀值时,半个周波之后能输出事件中断。

12 能量累加器

图35. 能量累加器功能框图

V93XX 有 8 个能量累加器,包括 2 个高速能量累加器和 6 个低速能量累加器。每个能量累加器有 4 种累加模式:功率累加、电流有效值累加、常数累加和可配置基波通道累加。具体内容请参考 SYS_IOCFGX 寄存器。

功率累加,通过 A 通道累加开关(A_SEL)和 B 通道累加开关(B_SEL)控制,可以实现仅累加 A 通道功率、仅累加 B 通道功率、累加 A 和 B 两通道功率和。功率可以通过 TYPE_SEL 选择有功 功率、无功功率和视在功率三种。

电流有效值累加,通过 A 通道累加开关(A_SEL)和 B 通道累加开关(B_SEL)控制,可以实现 仅累加 IA 通道有效值、仅累加 IB 通道有效值、累加 IA 和 IB 两通道有效值。其中,累加 IA 和 IB 两通道有效值可以通过 TYPE_SEL 选择累加两通道的累加和或累加差(RMSIA+RMSIB 或 RMSIA-RMSIB)。

常数累加不受 A/B 通道累加开关影响。

可配置基波通道累加,通过 A 通道累加开关 (A_SEL) 和 B 通道累加开关 (B_SEL) 控制,可以实现仅累加基波通道 1 数据、仅累加基波通道 2 数据、累加基波通道 1 和 2 数据累加和。

对于每一个送入能量累加器累加的数据运算的种类有四种,以有累加两个通道有功功率为例,运算方法如下所示。

- 0: 能量累加器只累加正数。只累加 PA 通道和 PB 通道中为正数的数据。当通道的数据为负数时,该数据不参与累加。
- 1: 能量累加器只累加负数(此时,实际累加值为原始值转换的正数)。只累加 PA 通道和 PB 通道中为负数的数据,当通道的数据为正数时,该数据不参与累加。
- 2: 能量累加器累加原始值。累加 PA + PB。
- 3: 能量累加器累加绝对值。累加 abs (PA) + abs (PB)。

12.1 高速能量累加器

开启高速能量累加器 1 需要配置 DSP_CTRL1 中的 CALCEN1 (Bit[6]), 开启高速能量累加器 2 需要配置 DSP_CTRL1 中的 CALCEN2 (bit[7])。高速能量累加器默认累加速度是 204.8KHz,也可以通过能量累加器时钟(DSP_CTRL1 中的 bit23)选择 32768Hz,在低速时钟的情况下只能使用常数累加模式,不支持其他模式的使用。

高速能量累加器支持 CF 输出。

12.2 低速能量累加器

6 个低速能量累加器开关是 DSP_CTRL1 中的 DGY_LC_EN (bit[15]) 控制,默认累加速度是 50Hz。

低速能量累加器累加速度受 DSP_CTRL0 中的 CURDAT_RATE(bit[31])和 DSP_CTRL1 中的 LCF ACC(bit[22])控制。

● CURDAT_RATE=0 时:

LCF_ACC=0,能量累加器 3、4、5、6、7、8 累加周期是 20ms(与系统时钟的准确度有 关);

LCF_ACC=1,能量累加器 3、4、5 累加周期是 10ms (与系统时钟的准确度有关),能量累加器 6、7、8 不累加。

● CURDAT RATE=1 时:

LCF_ACC=0, 能量累加器 3、4、5、6、7、8 累加周期是 40ms (与系统时钟的准确度有 关);

LCF_ACC=1,能量累加器 3、4、5 累加周期是 20ms (与系统时钟的准确度有关),能量累加器 6、7、8 不累加。

12.3 CF 输出

V93XX 支持 2 路 CF。CF 输出通过配置 SYS IOCFGX 寄存器选择 IO 口输出。

CF 支持来源选择。可以选择来源于能量累加器 1 或者能量累加器 2。

CF 支持极性选择、脉冲宽度选择、加速小信号校表。

详细信息参考计量控制寄存器 1(0x03, DSP CTRL1)中关于 CF 的描述。

12.4 能量累加启动潜动判断

芯片內部有能量累加器 1 和能量累加器 2 分别有一个潜动能量累加器。当能量累加器启动潜动使能后,该潜动能量累加器的输入固定为 1。其累加速率与能量累加器 1 和能量累加器 2 累加速率相等。

用户应分别在启动/潜动判断门限值寄存器(EGY_CRPTH)和能量累加门限值寄存器(EGY_PWRTH)设置各自的门限值。如果潜动能量累加器的累加值先达到 EGY_CRPTH 值时,能量累加器被清空,系统进入潜动状态。当能量累加器的累加值先达到 EGY_PWRTH 值时,潜动能量累加器被清空,系统进入启动状态,正常工作。

寄存器 EGY_CRPTH 的实际位宽为 32 位,但在参与启动/潜动的判断运算时,寄存器的内容会被自动在低位补 4 个 0,扩展到 36 位后再参与运算。

用户可通过 SYS STS (BIT19/BIT18) 判断是否处于潜动状态。

12.5 主动能量累加数据上传

能量累加器 1 和能量累加器 2 待累加数据支持通过 UART 协议主动上传。主动数据上传接口可通过 SYS IOCFGX 寄存器将 Px 引脚配置为主动数据上传口。

- 1. 通过一根数据线,异步传输。
- 2. 串口设置: 11 位传输(起始位+8 位数据位+奇校验+停止位)。

通讯波特率:在 SPI 通信时,主动数据上传 UART 通讯波特率固定为 4800,可加倍为 9600;在 UART 通信时,主动数据上传 UART 通讯波特率与当前通信波特率保持一致,可加倍为当前通信波特率两倍。

若计量控制寄存器 1 (DSP CTRL1) 中 BIT17 置 1,则开启波特率加倍功能

- 3. 通信时间间隔: 20ms/40ms (与瞬时功率刷新时间保持一致,具体时间与系统时钟的准确度有关)
- 4. 帧头: 0x7D

- 5. 校验和: 能量累加器 1 待累加数据加能量累加器 2 待累加数据,一共 8 个字节累加和取反加 0x33。
- 6. 帧长: 10 个字节
- 7. 可通过计量控制寄存器 1(0x03,DSP_CTRL1)中 BIT16 控制该模块开关。

协议格式如下:

表84. 能量累加上传数据格式

帧头	能量累加器 1 待累加数据	能量累加器 2 待累加数据	校验和
0x7D	4个字节	4 个字节	1个字节

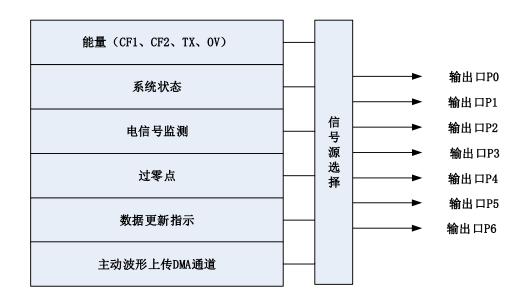
13 信号输出口

13.1 概述

V93XX 最多提供 7 个信号输出口,七个输出信号用于映射内部的输出信号源。

13.2 功能描述

7个信号输出口可以配置为 CF 输出、能量上传接口、波形主动上传 DMA 通道接口、过零点方波以及四大种类中断输出。信号输出口可以设置为输出某个单独信号,也可以设置为输出某几类中断信号。具体见 SYS IOCFGX 寄存器。


1 类中断(过零点中断输出): 电流过零点中断、电压过零点中断、高速能量累加器 1/2 溢出中断。

2类中断(数据更新指示): 波形刷新中断、瞬时有效值刷新中断、平均有效值刷新中断、瞬时功率值刷新中断、平均功率值刷新中断、波形缓存完成中断、波形缓存溢出中断、主动波形数据上传完成中断。

3 类中断(电信号监测输出): 电流 IB 通道欠流中断、电流 IB 通道过流中断、电流 IA 通道欠流中断、电流 IA 通道过流中断、电压通道欠压中断、电压通道过压中断、电压骤降中断、电压骤升中断、电压骤降结束中断、电压骤升结束中断、RCH 时钟输出,RCL 时钟输出。

4 类中断(系统状态报警): SPI 通信错误中断、UART 通信错误中断、参数自检错误中断、相位测量完成中断、掉电中断、Reference 错误中断、CTI 外灌时钟缺失中断、RAM 自检错误中断。

图36. 信号输出口功能框图

说明:

- 1. 当输出口作为 CF 输出时,支持设置输出脉冲的宽度,选择输出极性。当输出周期小于两倍 CF 输出脉冲宽度时,CF 按照占空比 50%输出。比如,输出宽度为 80 ms,输出周期小于 160 ms 时,则按照占空比 50%输出。
- 2. 作为能量上传 TX 输出时,使用 UART 协议。
- 3. 作为中断事件输出口时,输出口默认为低电平输出,如果事件发生,则输出高电平,直到用户清除事件标志位,输出状态才恢复默认电平。
- 4. 当作为过零点方波输出时,输出口默认为低电平输出,如果配置为正向过零点,则当信号从 负信号过渡到正信号时,IO 口翻转。
- 5. 当作为 DMA 输出口时,使用 SPI 协议,需要用户选择 SPLK、SPDO 和 SOCSN 口。

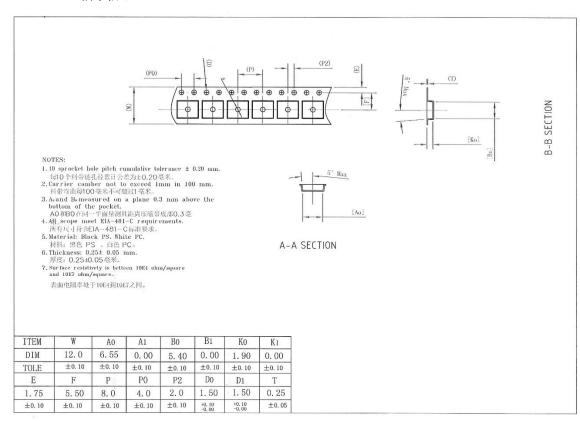
14 罗氏线圈处理

当外部采样电路采用罗氏线圈的方式时,需要对输入的电流信号进行积分处理,才能真正还原采样的电流信号,

罗氏线圈的感应电压与被测电流的关系如下:

$$U_{out} = M \frac{di}{dt}$$

M表示电流对时间的微分与被测电压成正比关系,通过调整 M 的取值(线圈匝数,种类等),Uout 控制在合理的范围内(ADC 的 1%-100%量程),可以得到较为准确的结果,将输出的电压再次进行积分就可以得到待测量的电流,同时罗氏线圈输出的电压应与电压通道呈 90°相位关系(罗氏输出的线圈电压滞后电压通道 90°)。


当配置寄存器 DSP_CTRL6 中的 DIDT_IA_ON(Bit[28])和 DIDT_IB_ON(Bit[27])打开时,系统会自动进行 ADC 采样数据的积分操作,从而得到真实的电流值。

DSP_CTRL6 中的 DIDT_IA_ON(Bit[28])和 DIDT_IB_ON(Bit[27])与基波的精度提高开关 FUND_PREC_ON[24],受限于指令处理数量,无法同时开启。如果同时开启的情况下,默认罗氏 线圈有效,但基波测量数据会出现错误。

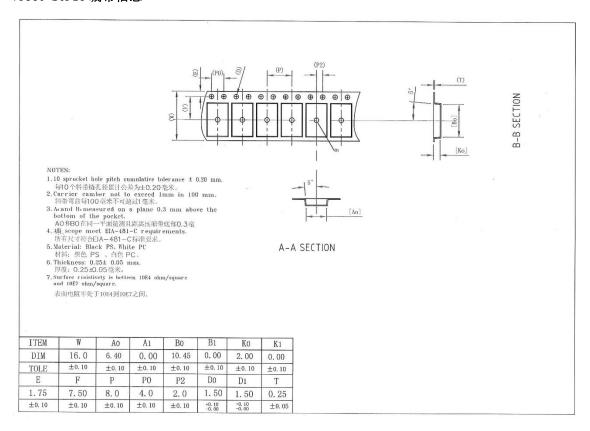

15 包装信息

图37. V9340 SOP8 编带信息

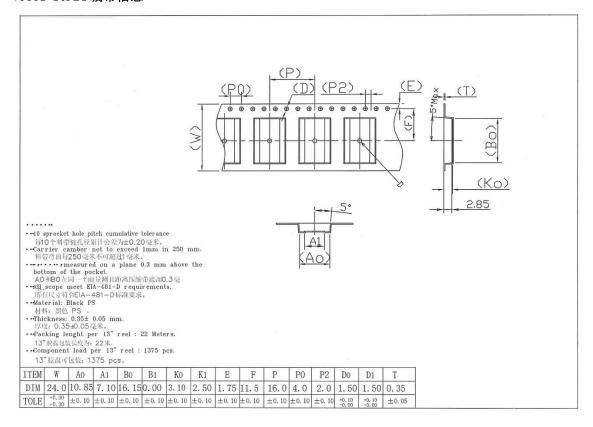


图38. V9360 S0P16 编带信息

图39. V9381 SOP24 编带信息

16 回流焊工艺

为客户提供的所有万高芯片均为无铅 RoHS 兼容产品。

本文推荐的回流焊工艺为无铅回流焊工艺,适用于无铅焊膏的纯无铅工艺。如果客户需要使用铅焊膏,请与智能芯片 FAE 联系。

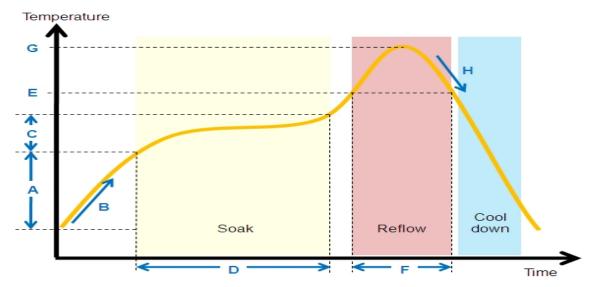
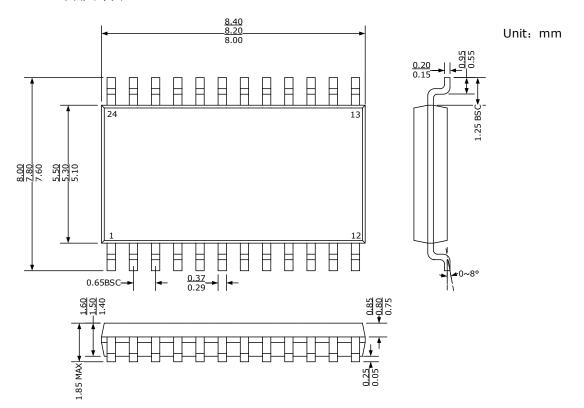

无铅回流曲线条件见表 85。该表仅供参考。

表85. 回流曲线条件

	QTI typical SMT reflow profile conditions(for reference only)	
	Step	Reflow condition
Environment	N2 purge reflow usage (yes/no)	Yes, N2 purge used
	If yes, O2 ppm level	O2 < 1500 ppm
Α	Preheat ramp up temperature range	25°C -> 150°C
В	Preheat ramp up rate	1.5~2.5 °C /sec
С	Soak temperature range	150°C -> 190°C
D	Soak time	80~110 sec
E	Liquidus temperature	217°C
F	Time above liquidus	60-90 sec
G	Peak temperature	240-250°C
Н	Cool down temperature rate	≤4°C /sec

下图了典型的无铅回流模式。


图40. 典型无铅回流模式

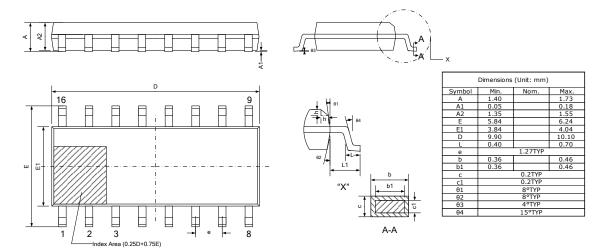
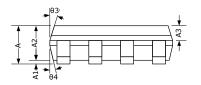
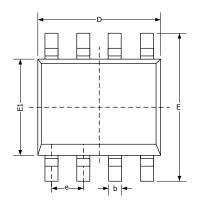

17 封装尺寸图

图41. V9381 封装尺寸图




图42. V9360 封装尺寸图

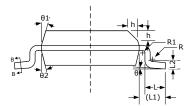


图43. V9340 封装尺寸图

Innovates for the Internet of Energy

杭州万高科技股份有限公司

地址:杭州市滨江区六和路 368 号海创基地北楼 A4070室

电话: +86-571-88157065 传真: +86-571-88157067

邮箱:service@vangotech.com 网址:http://www.vangotech.com

